1
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
2
|
Prenatal trio-based whole exome sequencing in fetuses with abnormalities of the skeletal system. Mol Genet Genomics 2022; 297:1017-1026. [PMID: 35583673 DOI: 10.1007/s00438-022-01899-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
Whole exome sequencing (WES) could yield diagnostic significance in the prenatal diagnosis of skeletal abnormalities. But the phenotypes of fetuses with skeletal abnormalities are heterogenous, and the clinical information we could obtain from an ongoing pregnancy is limited, making the prenatal diagnosis complicated. Therefore, the following interpretation and genetic counseling remain a challenge for clinicians. The aim of this study is to present and investigate the utility of trio-based WES in five fetuses with skeletal anomalies. Five trios with fetal ultrasonic skeletal anomalies were recruited in our study. Fetal specimens and parental peripheral blood were subjected to WES. The fetal skeletal abnormalities were presented through ultrasound scanning images. Fetal WES results showed variants in the PPIB, CHST3, COL1A1, and FGFR3 genes in the five trios. Inherited variants were found in two of the trios, while de novo variants were observed in three of them. Two novel compound heterozygous variants (c.437C > A and c.1044C > G) in CHST3 were identified. We presented five trios with fetal skeletal anomalies, found two novel variants and broadened the spectrum of variants associated with skeletal abnormalities, which would help the establishment of genotype-phenotype relationship in the prenatal setting. Trio-based WES could assist the prenatal diagnosis and genetic counseling of fetuses with skeletal abnormalities.
Collapse
|
3
|
Identifying Novel Osteoarthritis-Associated Genes in Human Cartilage Using a Systematic Meta-Analysis and a Multi-Source Integrated Network. Int J Mol Sci 2022; 23:ijms23084395. [PMID: 35457215 PMCID: PMC9030814 DOI: 10.3390/ijms23084395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis, the most common joint disorder, is characterised by deterioration of the articular cartilage. Many studies have identified potential therapeutic targets, yet no effective treatment has been determined. The aim of this study was to identify and rank osteoarthritis-associated genes and micro-RNAs to prioritise those most integral to the disease. A systematic meta-analysis of differentially expressed mRNA and micro-RNAs in human osteoarthritic cartilage was conducted. Ingenuity pathway analysis identified cellular senescence as an enriched pathway, confirmed by a significant overlap (p < 0.01) with cellular senescence drivers (CellAge Database). A co-expression network was built using genes from the meta-analysis as seed nodes and combined with micro-RNA targets and SNP datasets to construct a multi-source information network. This accumulated and connected 1689 genes which were ranked based on node and edge aggregated scores. These bioinformatic analyses were confirmed at the protein level by mass spectrometry of the different zones of human osteoarthritic cartilage (superficial, middle, and deep) compared to normal controls. This analysis, and subsequent experimental confirmation, revealed five novel osteoarthritis-associated proteins (PPIB, ASS1, LHDB, TPI1, and ARPC4-TTLL3). Focusing future studies on these novel targets may lead to new therapies for osteoarthritis.
Collapse
|
4
|
Danielsson H, Tebani A, Zhong W, Fagerberg L, Brusselaers N, Hård AL, Uhlén M, Hellström A. Blood protein profiles related to preterm birth and retinopathy of prematurity. Pediatr Res 2022; 91:937-946. [PMID: 33895781 PMCID: PMC9064798 DOI: 10.1038/s41390-021-01528-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP. METHODS Longitudinal serum protein profiles the first months after birth in 14 extremely preterm infants were integrated with perinatal and ROP data. In total, 448 unique protein targets were analyzed using Proximity Extension Assays. RESULTS We found 20 serum proteins associated with gestational age and/or ROP functioning within mainly angiogenesis, hematopoiesis, bone regulation, immune function, and lipid metabolism. Infants with severe ROP had persistent lower levels of several identified proteins during the first postnatal months. CONCLUSIONS The study contributes to the understanding of the relationship between longitudinal serum protein levels and immaturity and abnormal retinal neurovascular development. This is essential for understanding pathophysiological mechanisms and to optimize diagnosis, treatment and prevention for ROP. IMPACT Longitudinal protein profiles of 14 extremely preterm infants were analyzed using a novel multiplex protein analysis platform combined with perinatal data. Proteins associated with gestational age at birth and the neurovascular disease ROP were identified. Among infants with ROP, longitudinal levels of the identified proteins remained largely unchanged during the first postnatal months. The main functions of the proteins identified were angiogenesis, hematopoiesis, immune function, bone regulation, lipid metabolism, and central nervous system development. The study contributes to the understanding of longitudinal serum protein patterns related to gestational age and their association with abnormal retinal neuro-vascular development.
Collapse
Affiliation(s)
- Hanna Danielsson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.416648.90000 0000 8986 2221Sach’s Children’s and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Abdellah Tebani
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden ,grid.41724.340000 0001 2296 5231Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France ,grid.41724.340000 0001 2296 5231Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| | - Wen Zhong
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Linn Fagerberg
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Nele Brusselaers
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.5284.b0000 0001 0790 3681Global Health Institute, Antwerp University, Antwerp, Belgium ,grid.5342.00000 0001 2069 7798Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Anna-Lena Hård
- grid.1649.a000000009445082XThe Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ann Hellström
- The Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
5
|
Zhu W, Yan K, Chen X, Zhao W, Wu Y, Tang H, Chen M, Wu J, Wang P, Zhang R, Shen Y, Zhang D. A Founder Pathogenic Variant of PPIB Unique to Chinese Population Causes Osteogenesis Imperfecta IX. Front Genet 2021; 12:717294. [PMID: 34659339 PMCID: PMC8511635 DOI: 10.3389/fgene.2021.717294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility. PPIB pathogenic variants cause a perinatal lethal form of OI type IX. A limited number of pathogenic variants have been reported so far worldwide. Methods: We identified a rare pedigree whose phenotype was highly consistent with OI-IX. Exome sequencing was performed to uncover the causal variants. The variant pathogenicity was classified following the ACMG/AMP guidelines. The founder effect and the age of the variant were assessed. Results: We identified a homozygous missense variant c.509G > A/p.G170D in PPIB in an affected fetus. This variant is a Chinese-specific allele and can now be classified as pathogenic. We estimated the allele frequency (AF) of this variant to be 0.0000427 in a Chinese cohort involving 128,781 individuals. All patients and carriers shared a common haplotype, indicative of a founder effect. The estimated age of variant was 65,160 years. We further identified pathogenic variants of PPIB in gnomAD and ClinVar databases, the conserved estimation of OI type IX incidence to be 1/1,000,000 in Chinese population. Conclusion: We reported a founder pathogenic variant in PPIB specific to the Chinese population. We further provided our initial estimation of OI-IX disease incidence in China.
Collapse
Affiliation(s)
- Wenting Zhu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Yan
- Department of Genetics and Reproduction, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xijing Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhao
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Wu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanna Tang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan
| | - Jian Wu
- MyGenostics Inc., Beijing, China
| | | | - Runju Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiping Shen
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Genetics and Genomics, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Dan Zhang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, China
| |
Collapse
|
6
|
Yan HM, Liu ZM, Cao B, Zhang VW, He YD, Jia ZJ, Xi H, Liu J, Fang F, Wang H. Novel Mutations in the GTPBP3 Gene for Mitochondrial Disease and Characteristics of Related Phenotypic Spectrum: The First Three Cases From China. Front Genet 2021; 12:611226. [PMID: 34276756 PMCID: PMC8281222 DOI: 10.3389/fgene.2021.611226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
Combined Oxidative Phosphorylation Deficiency 23 (COXPD23) caused by mutations in GTPBP3 gene is a rare mitochondrial disease, and this disorder identified from the Chinese population has not been described thus far. Here, we report a case series of three patients with COXPD23 caused by GTPBP3 mutations, from a severe to a mild phenotype. The main clinical features of these patients include lactic acidosis, myocardial damage, and neurologic symptoms. Whole genome sequencing and targeted panels of candidate human mitochondrial genome revealed that patient 1 was a compound heterozygote with novel mutations c.413C > T (p. A138V) and c.509_510del (p. E170Gfs∗42) in GTPBP3. Patient 2 was a compound heterozygote with novel mutations c.544G > T (p. G182X) and c.785A > C (p.Q262P), while patient 3 was a compound heterozygote with a previously reported mutation c.424G > A (p.E142K) and novel mutation c.785A > C (p.Q262P). In conclusion, we first describe three Chinese individuals with COXPD23, and discuss the genotype-phenotype correlations of GTPBP3 mutations. Our findings provide novel information in the diagnosis and genetic counseling of patients with mitochondrial disease.
Collapse
Affiliation(s)
- Hui-Ming Yan
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| | - Zhi-Mei Liu
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Bei Cao
- Department of Neonatology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Victor Wei Zhang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, United States.,AmCare Genomics Lab, Guangzhou, China
| | - Yi-Duo He
- AmCare Genomics Lab, Guangzhou, China
| | - Zheng-Jun Jia
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| | - Hui Xi
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| | - Jing Liu
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| | - Fang Fang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hua Wang
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| |
Collapse
|
7
|
Whole Exome Sequencing with Comprehensive Gene Set Analysis Identified a Biparental-Origin Homozygous c.509G>A Mutation in PPIB Gene Clustered in Two Taiwanese Families Exhibiting Fetal Skeletal Dysplasia during Prenatal Ultrasound. Diagnostics (Basel) 2020; 10:diagnostics10050286. [PMID: 32392875 PMCID: PMC7277976 DOI: 10.3390/diagnostics10050286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 01/27/2023] Open
Abstract
Skeletal dysplasia (SD) is a complex group of bone and cartilage disorders often detectable by fetal ultrasound, but the definitive diagnosis remains challenging because the phenotypes are highly variable and often overlap among different disorders. The molecular mechanisms underlying this condition are also diverse. Hundreds of genes are involved in the pathogenesis of SD, but most of them are yet to be elucidated, rendering genotyping almost infeasible except those most common such as fibroblast growth factor receptor 3 (FGFR3), collagen type I alpha 1 chain (COL1A1), collagen type I alpha 2 chain (COL1A2), diastrophic dysplasia sulfate transporter (DTDST), and SRY-box 9 (SOX9). Here, we report the use of trio-based whole exome sequencing (trio-WES) with comprehensive gene set analysis in two Taiwanese non-consanguineous families with fetal SD at autopsy. A biparental-origin homozygous c.509G>A(p.G170D) mutation in peptidylprolyl isomerase B (PPIB) gene was identified. The results support a diagnosis of a rare form of autosomal recessive SD, osteogenesis imperfecta type IX (OI IX), and confirm that the use of a trio-WES study is helpful to uncover a genetic explanation for observed fetal anomalies (e.g., SD), especially in cases suggesting autosomal recessive inheritance. Moreover, the finding of an identical PPIB mutation in two non-consanguineous families highlights the possibility of the founder effect, which deserves future investigations in the Taiwanese population.
Collapse
|
8
|
Wu J, Zhang W, Xia L, Feng L, Shu Z, Zhang J, Ye W, Zeng N, Zhou A. Characterization of PPIB interaction in the P3H1 ternary complex and implications for its pathological mutations. Cell Mol Life Sci 2019; 76:3899-3914. [PMID: 30993352 PMCID: PMC11105654 DOI: 10.1007/s00018-019-03102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
The P3H1/CRTAP/PPIB complex is essential for prolyl 3-hydroxylation and folding of procollagens in the endoplasmic reticulum (ER). Deficiency in any component of this ternary complex is associated with the misfolding of collagen and the onset of osteogenesis imperfecta. However, little structure information is available about how this ternary complex is assembled and retained in the ER. Here, we assessed the role of the KDEL sequence of P3H1 and probed the spatial interactions of PPIB in the complex. We show that the KDEL sequence is essential for retaining the P3H1 complex in the ER. Its removal resulted in co-secretion of P3H1 and CRTAP out of the cell, which was mediated by the binding of P3H1 N-terminal domain with CRTAP. The secreted P3H1/CRTAP can readily bind PPIB with their C-termini close to PPIB in the ternary complex. Cysteine modification, crosslinking, and mass spectrometry experiments identified PPIB surface residues involved in the complex formation, and showed that the surface of PPIB is extensively covered by the binding of P3H1 and CRTAP. Most importantly, we demonstrated that one disease-associated pathological PPIB mutation on the binding interface did not affect the PPIB prolyl-isomerase activity, but disrupted the formation of P3H1/CRTAP/PPIB ternary complex. This suggests that defects in the integrity of the P3H1 ternary complex are associated with pathological collagen misfolding. Taken together, these results provide novel structural information on how PPIB interacts with other components of the P3H1 complex and indicate that the integrity of P3H1 complex is required for proper collagen formation.
Collapse
Affiliation(s)
- Jiawei Wu
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenting Zhang
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Xia
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingling Feng
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zimei Shu
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Zhang
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Ye
- Department of Preventive Dentistry, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Naiyan Zeng
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
You Y, Wang X, Li S, Zhao X, Zhang X. Exome sequencing reveals a novel MFN2 missense mutation in a Chinese family with Charcot-Marie-Tooth type 2A. Exp Ther Med 2018; 16:2281-2286. [PMID: 30210586 PMCID: PMC6122517 DOI: 10.3892/etm.2018.6513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) is a group of inherited peripheral neuropathies. To date, mutations in >80 genes are reportedly associated with CMT. Protein mitofusin 2 encoded by MFN2 serves an essential role in mitochondrial fusion and regulation of apoptosis, which has previously been reported to be highly associated with an axonal form of neuropathy (CMT2A). In the present study, a large Chinese family with severe CMT was reported and a genetic analysis of the disease was performed. A detailed physical examination for CMT was performed in 13 family members and electrophysiological examinations were performed in 3 affected family members. Whole-exome sequencing was performed on the proband, and the suspected variants were identified by Sanger sequencing. The pathogenicity of mutation was verified by restriction fragment length polymorphism analysis in the family followed by a bioinformatics analysis. A novel c.1190G>C; p.(R397P) mutation in the MFN2 gene was identified in the proband, and co-segregated between genotype and phenotype in the family. The substituted amino acid changed the hydrophobicity and charge characteristics of the mitofusin 2 coiled-coiled domain; thus it may affect its biological function. In summary, a novel pathogenic mutation was identified in a Chinese family with CMT, which expands the phenotypic and mutational spectrum of CMT2A, and provides evidence for prenatal interventions and more precise pharmacological treatments to this family.
Collapse
Affiliation(s)
- Yi You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaodong Wang
- Department of Paediatric Orthopaedics, The Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xue Zhang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|