1
|
Khan K, Khan A, Rahman ZU, Khan F, Latief N, Fazal N. Genetic Polymorphism in miRNA Genes and Their Association with susceptibility of Coronary Heart Disease: anAn Updated Rreview. Pathol Res Pract 2024; 264:155675. [PMID: 39488988 DOI: 10.1016/j.prp.2024.155675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Coronary heart disease (CHD) remains a major public health concern worldwide, with a complex interplay of genetic, environmental and lifestyle factors contributing to its pathogenesis. The potential significance of microRNAs (miRNAs) in the onset and progression of CHD has attracted increasing attention in recent years. Small non-coding RNA molecules called miRNAs control gene expression at the post-transcriptional level. Dysregulation of miRNAs has been linked to a variety of biological processes, including cell division, proliferation, apoptosis, and inflammation. Numerous research studies have looked into the relationship between genetic variants in miRNA genes and CHD susceptibility. This review highlights the recent research work carried out to identify the relationship of miRNA genes polymorphism with the progression and susceptibility of CHD. Such studies could pave the way for the development of personalized strategies for CHD prevention and treatment based on an individual's genetic profile.
Collapse
Affiliation(s)
- Khalid Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Aakif Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Zia Ur Rahman
- University Institute of Medical Laboratory Technology, the University of Lahore, Pakistan
| | - Faisal Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Noreen Latief
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Numan Fazal
- University Institute of Medical Laboratory Technology, the University of Lahore, Pakistan.
| |
Collapse
|
2
|
Donniacuo M, De Angelis A, Telesca M, Bellocchio G, Riemma MA, Paolisso P, Scisciola L, Cianflone E, Torella D, Castaldo G, Capuano A, Urbanek K, Berrino L, Rossi F, Cappetta D. Atrial fibrillation: Epigenetic aspects and role of sodium-glucose cotransporter 2 inhibitors. Pharmacol Res 2023; 188:106591. [PMID: 36502999 DOI: 10.1016/j.phrs.2022.106591] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia and is associated with substantial morbidity and mortality. Pathophysiological aspects consist in the activation of pro-fibrotic signaling and Ca2+ handling abnormalities at atrial level. Structural and electrical remodeling creates a substrate for AF by triggering conduction abnormalities and cardiac arrhythmias. The care of AF patients focuses predominantly on anticoagulation, symptoms control and the management of risk factors and comorbidities. The goal of AF therapy points to restore sinus rhythm, re-establish atrioventricular synchrony and improve atrial contribution to the stroke volume. New layer of information to better comprehend AF pathophysiology, and identify targets for novel pharmacological interventions consists of the epigenetic phenomena including, among others, DNA methylation, histone modifications and noncoding RNAs. Moreover, the benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in diabetic and non-diabetic patients at cardiovascular risk as well as emerging evidence on the ability of SGLT2i to modify epigenetic signature in cardiovascular diseases provide a solid background to investigate a possible role of this drug class in the onset and progression of AF. In this review, following a summary of pathophysiology and management, epigenetic mechanisms in AF and the potential of sodium-glucose SGLT2i in AF patients are discussed.
Collapse
Affiliation(s)
- M Donniacuo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - A De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - M Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - G Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - M A Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - P Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy
| | - L Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - E Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - D Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - G Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced, Via G. Salvatore 486, 80131 Naples, Italy
| | - A Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - K Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced, Via G. Salvatore 486, 80131 Naples, Italy.
| | - L Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - D Cappetta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
3
|
Bao Q, Li R, Wang C, Wang S, Cheng M, Pu C, Zou L, Liu C. Association between microRNA-146a rs2910164 polymorphism and coronary heart disease: An updated meta-analysis. Medicine (Baltimore) 2022; 101:e31860. [PMID: 36401419 PMCID: PMC9678560 DOI: 10.1097/md.0000000000031860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is one of the manifestations of atherosclerosis with a high morbidity rate. MicroRNA (miRNA)-146a rs2910164, a single nucleotide polymorphism, is associated with the progression of CHD risk. However, the results are controversial and uncertain. Therefore, an updated meta-analysis was conducted to evaluate the association between rs2910164 and CHD susceptibility. METHODS PubMed, Cochrane Library, EMBASE, Web of Science, China's National Knowledge Infrastructure, VIP, and Wan fang were searched for the eligible articles until April 30, 2022. The odds ratios (ORs) with 95% confidence interval (CIs) were calculated to assess the correlation. Bonferroni correction was utilized between multiple comparisons. Trial sequential analysis was performed to measure the required information size and assess the reliability of the meta-analysis results. RESULTS A total of 18 eligible studies, including 6859 cases and 8469 controls, were analyzed in our meta-analysis. After Bonferroni correction, we found that the G allele at rs2910164 was associated with significantly decreased CHD risk in the allelic model (OR = 0.86), homozygous model (OR = 0.79), and heterozygous model (OR = 0.89) in total population. In the subgroup analysis, the subjects containing the G allele and GG genotype were associated with a lower risk of CHD in the Chinese population, not the GG + CG and CG genotype. In addition, under the allelic, homozygous, heterozygous, and dominant models, miR-146a rs2910164 was at lower CHD risk in the large size population except in the recessive model. CONCLUSION These results show that miR-146a rs2910164 might be associated with lower CHD susceptibility.
Collapse
Affiliation(s)
- Qinxue Bao
- Department of Cardiology, Dayi County People’s Hospital, Chengdu, Sichuan, China
| | - Rui Li
- Department of Cardiology, Dayi County People’s Hospital, Chengdu, Sichuan, China
| | - Chengfeng Wang
- Department of Cardiology, Dayi County People’s Hospital, Chengdu, Sichuan, China
| | - Shan Wang
- Department of Cardiology, Dayi County People’s Hospital, Chengdu, Sichuan, China
| | - Minli Cheng
- Department of Cardiology, Dayi County People’s Hospital, Chengdu, Sichuan, China
| | - Chunhua Pu
- Department of Cardiology, Dayi County People’s Hospital, Chengdu, Sichuan, China
| | - Lei Zou
- Department of Cardiology, Dayi County People’s Hospital, Chengdu, Sichuan, China
| | - Chao Liu
- Department of Cardiology, Dayi County People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Koniari I, Artopoulou E, Velissaris D, Ainslie M, Mplani V, Karavasili G, Kounis N, Tsigkas G. Biomarkers in the clinical management of patients with atrial fibrillation and heart failure. J Geriatr Cardiol 2021; 18:908-951. [PMID: 34908928 PMCID: PMC8648548 DOI: 10.11909/j.issn.1671-5411.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) are two cardiovascular diseases with an increasing prevalence worldwide. These conditions share common pathophysiologiesand frequently co-exit. In fact, the occurrence of either condition can 'cause' the development of the other, creating a new patient group that demands different management strategies to that if they occur in isolation. Regardless of the temproral association of the two conditions, their presence is linked with adverse cardiovascular outcomes, increased rate of hospitalizations, and increased economic burden on healthcare systems. The use of low-cost, easily accessible and applicable biomarkers may hasten the correct diagnosis and the effective treatment of AF and HF. Both AF and HF effect multiple physiological pathways and thus a great number of biomarkers can be measured that potentially give the clinician important diagnostic and prognostic information. These will then guide patient centred therapeutic management. The current biomarkers that offer potential for guiding therapy, focus on the physiological pathways of miRNA, myocardial stretch and injury, oxidative stress, inflammation, fibrosis, coagulation and renal impairment. Each of these has different utility in current clinincal practice.
Collapse
Affiliation(s)
- Ioanna Koniari
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Eleni Artopoulou
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | | | - Mark Ainslie
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
- Division of Cardiovascular Sciences, University of Manchester
| | - Virginia Mplani
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Georgia Karavasili
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Nicholas Kounis
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| |
Collapse
|
5
|
Miranda-Duarte A, Borgonio-Cuadra VM, González-Huerta NC, Rojas-Toledo EX, Ahumada-Pérez JF, Morales-Hernández E, Pérez-Hernández N, Rodríguez-Pérez JM, Vargas-Alarcón G. Are functional variants of the microRNA-146a gene associated with primary knee OA? Evidence in Mexican mestizo population. Mol Biol Rep 2021; 48:1549-1557. [PMID: 33590413 DOI: 10.1007/s11033-021-06207-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023]
Abstract
MicroRNA-146a (miR-146a) is an inflammatory response regulator whose expression is deregulated in osteoarthritis (OA); variations in the miR-146a gene could affect OA risk. This study aimed to analyze the association between two functional variants of the miR-146a gene and primary knee OA in Mexican mestizo population. Methods and Results. A case-control study was conducted with cases defined as individuals aged ≥ 40 years with primary knee OA grade ≥ 2, according to the Kellgren-Lawrence system. Controls were volunteers with no primary knee OA with radiographic grade < 2. TaqMan allelic discrimination assays genotyped the rs2910164 and rs57095329. Allelic and genotypic frequencies, as well as the Hardy-Weinberg equilibrium (HWE), were calculated. The genetic association was tested under codominant, dominant, and recessive models. Non-conditional logistic regressions were carried out to estimate the association magnitude. We included 310 cases and 379 controls. Despite rs2910164 being in HWE, there was no association under codominant, dominant, and recessive models. In women with OA grade 2, the codominant model found a trend between the CC genotype and increased risk [OR (95% CI) 1.6 (0.7-3.5)]; the same trend was found in OA grade 4 in the codominant and recessive models [1.8 (0.6-5.4) and 2.0 (0.7-5.9)]. Conversely, in men with OA grade 4, the CC genotype tended to be associated with a lower risk in the codominant and recessive models [0.6 (0.1-6.0) and 0.5 (0.1-5.1)]. Conclusion. Our results show that miR-146a gene variants are not significantly associated with primary knee OA in Mexican mestizos.
Collapse
Affiliation(s)
- Antonio Miranda-Duarte
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico.
| | - Verónica Marusa Borgonio-Cuadra
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Norma Celia González-Huerta
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Emma Xochitl Rojas-Toledo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Juan Francisco Ahumada-Pérez
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Eugenio Morales-Hernández
- Servicio de Radiología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico City, Mexico
| |
Collapse
|
6
|
Li Y, Li C, Liu S, Yang J, Shi L, Yao Y. The associations and roles of microRNA single-nucleotide polymorphisms in cervical cancer. Int J Med Sci 2021; 18:2347-2354. [PMID: 33967611 PMCID: PMC8100648 DOI: 10.7150/ijms.57990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/26/2021] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is one of the fourth most common gynecological malignancies and has been identified as the fourth leading cause of cancer death in women worldwide. MicroRNAs (miRNAs) are single-stranded sequences of noncoding RNAs that are approximately 22-24 nucleotides in length. They modulate posttranscriptional mRNA expression and play critical roles in cervical cancer. Single nucleotide polymorphisms (SNPs) in miRNA genes may alter miRNA expression and maturation and have been associated with various cancers. This review mainly focuses on the roles of SNPs in miRNA genes in the development of cervical cancer and summarizes the research progress of miRNA SNPs in cervical cancer and their molecular regulation mechanisms.
Collapse
Affiliation(s)
- Yaheng Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Chuanyin Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Jia Yang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Yufeng Yao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| |
Collapse
|
7
|
Mir R, Jha CK, Elfaki I, Rehman S, Javid J, Khullar N, Banu S, Chahal SMS. MicroRNA-224 (rs188519172 A>G) Gene Variability is Associated with a Decreased Susceptibility to Coronary Artery Disease: A Case-Control Study. Microrna 2020; 8:198-205. [PMID: 30539710 DOI: 10.2174/2211536608666181211153859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/02/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
AIM The microRNAs regulate the expression of multiple genes involved in diseases such as cancer, diabetes and cardiovascular disease. In this study, we have investigated the association between the miR-224 gene polymorphism (rs188519172A>G) and susceptibility of coronary artery disease CAD. METHODOLOGY Hundred CAD patients and 100-matched healthy control were included. Genotyping of the miR-224 (rs188519172A>G) polymorphism was performed using Amplification refractory mutation system PCR method (ARMS-PCR). RESULTS A significant difference was observed in the genotype distribution among CAD patients and healthy controls (P=0.018). The frequencies of all three genotypes GG, GA, AA reported in the patient's samples were 33%, 66% and 01%, and in the healthy controls samples, were 16%, 82% and 2% respectively. A multivariate analysis based on logistic regression was conducted for each group to estimate the association between miR-224 rs188519172 genotypes and risk to coronary artery disease. Results show that the miR-224 (rs188519172 A>G) polymorphism was associated with a decreased risk to CAD in a codominant model, GA genotype vs. GG (OR = 0.39 (95 % CI, 0.19-0.76), RR 0.58 (0.38-0.90, P=0.006). In the dominant model, (GA+AA vs. GG), there was also a significant association with the OR=0.38 (95 % CI (0.19-0.76), RR 0.58 (0.38-0.89), and P=0.006. Whereas, in the recessive model, (GG+GA vs. AA), there was no significant association of CAD with OR=0.49 (95% CI (0.044-5.54), RR 0.74 (0.33-1.68), and P=0.48. CONCLUSION Our findings indicated that miR-224 (rs188519172) GA genotype is associated with a decreased susceptibility to CAD.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Chandan K Jha
- Department of Human Genetics, Punjabi University, Patiala, Punjab, India
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Suriya Rehman
- Institute of Research and Medical Consultation, Imam AbdulRahman Bin Faisal University, Dammam, Saudi Arabia
| | - Jamsheed Javid
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naina Khullar
- Department of Zoology, Mata Guri College, Punjab, India
| | - Shaheena Banu
- Sri Jayadeva Institute of Cardiovascular Science & Research, Bangalore, India
| | | |
Collapse
|
8
|
Mir R, Jha CK, Elfaki I, Javid J, Rehman S, Khullar N, Banu S, Chahal SMS. Incidence of MicroR-4513C/T Gene Variability in Coronary Artery Disease - A Case-Control Study. Endocr Metab Immune Disord Drug Targets 2020; 19:1216-1223. [PMID: 31038082 DOI: 10.2174/1871530319666190417111940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genetic variants in pre-microRNA genes or the 3'UTR of miRNA target genes could influence miRNA-mediated regulation of gene expression and thus contribute to the susceptibility and prognosis of human diseases. Several studies have investigated the association of genetic variants in the seed region of miRNAs with cardiometabolic phenotypes .Therefore the aim of study was to investigate the potential association of miR-4513 rs2168518 C>T gene variability with the risk of developing CAD and its association with different cardiometabolic phenotypes in an Indian cohort to stratify CAD burden in the general population. METHODS The study was conducted on 100 clinically confirmed CAD patients and 100 healthy individuals. Genotyping of MicroR-4513 rs2168518C>T gene variability was performed using Amplification refractory mutation system PCR method. RESULTS A significant difference was observed in the genotype distribution among CAD cases and healthy controls. The frequencies of three genotypes CC, CT, TT in CAD patient and healthy controls were 5%, 77%, 18%, and 28%, 45% and 27% respectively. A multivariate analysis showed that miR- 4513 rs2168518 polymorphism is associated with an increased susceptibility to CAD in codominant inheritance model for variant CC vs. CT OR 9.58 CI (3.45-26.57), RR 2.3(1.75-3.02), P=0.001. Results also indicate a potential dominant effect of miR-4513 rs2168518 C/T polymorphism on susceptibility of CAD in dominant inheritance model for variant CC vs. (CT+TT) OR 7.38 (2.71-20.07), RR 1.96 (1.56-2.46), P=0.001. In allelic comparison, T allele weakly increased risk of CAD compared to C allele (OR=1.50, 95% CI (1.09-2.26) RR 1.15 (0.94-1.39) P=0.044. CONCLUSION It is concluded that CT genotype and T allele of microR-4513 rs2168518 is strongly associated with increased susceptibility to CAD. Furthers studies with larger sample sizes are necessary to confirm this result.
Collapse
Affiliation(s)
- Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Chandan K Jha
- Department of Human Genetics, Punjabi University, Punjab, India
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Jamsheed Javid
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Suriya Rehman
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naina Khullar
- Department of Zoology, Mata Guri College, Fatehgarh Sahib, Punjab, India
| | - Shaheena Banu
- Sri Jayadeva Institute of Cardiovascular Science and Research, Bangalore, India
| | - S M S Chahal
- Department of Human Genetics, Punjabi University, Punjab, India
| |
Collapse
|
9
|
Papathanasiou I, Mourmoura E, Balis C, Tsezou A. Impact of miR-SNP rs2910164 on miR-146a expression in osteoarthritic chondrocytes. Adv Med Sci 2020; 65:78-85. [PMID: 31918067 DOI: 10.1016/j.advms.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/04/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE MiR-146a acts as a negative inflammatory mediator in different diseases and has been implicated in osteoarthritis (OA) pathogenesis. In our study, we investigated the association between miR-SNP rs2910164 and OA susceptibility and its role on the expression of miR-146a, inflammatory and catabolic mediators in osteoarthritic chondrocytes. MATERIALS AND METHODS Genetic association analysis was performed in 1688 knee OA patients and healthy individuals of Greek origin. Genomic DNA was extracted from blood and genotyped for rs2910164 (G > C) using Restriction-Fragment Length Polymorphism (RFLP). Total RNA was extracted from chondrocytes of 18 OA patients and miR-146a, IL-1 Receptor-Associated Kinase 1 (IRAK-1), TNF Receptor-Associated Factor 6 (TRAF-6), A Disintegrin and Metalloproteinase with Thrombospondin Motifs 5 (ADAMTS-5), Matrix Metalloproteinase-13 (MMP-13), Interleukin-6 (IL-6), Interleukin-1 Beta (IL-1β) and Tumor Necrosis Factor-Alpha (TNF-α) expression was evaluated using quantitative Real-Time PCR (qRT-PCR). RESULTS OA patients carrying rs2910164-GC and CC genotypes did not have an increased risk for OA development compared to GG genotype carriers. MiR-146a expression in OA chondrocytes was significantly lower in patients with rs2910164-GC genotype than in the GG carriers. OA patients carrying the rs2910164-GC genotype in their chondrocytes exhibited increased IRAK-1, TRAF-6, MMP-13, IL-1β and IL-6 expression levels compared with rs2910164-GG carriers. CONCLUSION We demonstrate, for the first time, that miR-SNP rs2910164 in miR-146a gene is associated with reduced miR-146a and increased inflammatory and catabolic mediators' expression in OA chondrocytes. Our data imply that genetic variations in miRNAs linked to OA pathogenesis may regulate their expression levels, suggesting new therapeutic strategies for patients with cartilage diseases.
Collapse
|
10
|
Agiannitopoulos K, Samara P, Papadopoulou M, Efthymiadou A, Papadopoulou E, Tsaousis GN, Mertzanos G, Babalis D, Lamnissou K. miRNA polymorphisms and risk of premature coronary artery disease. Hellenic J Cardiol 2020; 62:278-284. [PMID: 32092393 DOI: 10.1016/j.hjc.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Several microRNA (miRNA) polymorphisms have been associated with susceptibility to specific health disorders, including cardiovascular diseases. The aim of the present study was to investigate whether four well-studied miRNA polymorphisms in non-Caucasian populations, namely miR146a G>C (rs2910164), miR149 C>T (rs2292832), miR196a2 C>T (rs11614913) and miR499 A>G (rs3746444), contribute to the risk for the development of premature Coronary Artery Disease (CAD) in the Greek population. METHODS We used a case-control study to examine these associations in 400 individuals: 200 CAD patients [including a subgroup of myocardial infraction (MI) patients] and 200 healthy controls, all of Greek origin. MiRNA polymorphisms were genotyped using three different assays: Polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP), High resolution Melting (HRM) and Sanger sequencing. RESULTS Two of these polymorphisms, miR196a2 C>T (rs11614913) and miR499 A>G (rs3746444) were found to be strongly associated with increased risk for CAD (p=0.0388 and p=0.0013, respectively) and for MI (p=0.0281 and p=0.0273, respectively). Furthermore, miR146C-miR149C-miR196T-miR499G allele combination appeared to be significantly related to CAD (p=0.0185) and MI (p=0.0337) prevalence. CONCLUSIONS Our results suggest that at least two of the studied polymorphisms, miR196a2 C>T (rs11614913) and miR499 A>G (rs3746444), as well as the miR146C-miR149C-miR196T-miR499G allele combination could represent useful biomarkers of CAD and/or MI susceptibility in the Greek population. These special genetic characteristics, in combination with environmental factors and personal habits, might contribute to CAD and/or MI prevalence.
Collapse
Affiliation(s)
- Konstantinos Agiannitopoulos
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece.
| | - Pinelopi Samara
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Miranta Papadopoulou
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Astradeni Efthymiadou
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | - George Mertzanos
- Department of Cardiology, "KAT" General Hospital, Athens, Greece
| | | | - Klea Lamnissou
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Metzinger-Le Meuth V, Fourdinier O, Charnaux N, Massy ZA, Metzinger L. The expanding roles of microRNAs in kidney pathophysiology. Nephrol Dial Transplant 2019; 34:7-15. [PMID: 29800482 DOI: 10.1093/ndt/gfy140] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded RNAs that control gene expression through base pairing with regions within the 3'-untranslated region of target mRNAs. These small non-coding RNAs are now increasingly known to be involved in kidney physiopathology. In this review we will describe how miRNAs were in recent years implicated in cellular and animal models of kidney disease but also in chronic kidney disease, haemodialysed and grafted patients, acute kidney injury patients and so on. At the moment miRNAs are considered as potential biomarkers in nephrology, but larger cohorts as well as the standardization of methods of measurement will be needed to confirm their usefulness. It will further be of the utmost importance to select specific tissues and biofluids to make miRNAs appropriate in day-to-day clinical practice. In addition, up- or down-regulating miRNAs that were described as deregulated in kidney diseases may represent innovative therapeutic methods to cure these disorders. We will enumerate in this review the most recent methods that can be used to deliver miRNAs in a specific and suitable way in kidney and other organs damaged by kidney failure, such as the cardiovascular system.
Collapse
Affiliation(s)
- Valérie Metzinger-Le Meuth
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Paris 13, Bobigny, France
| | | | - Nathalie Charnaux
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Paris 13, Bobigny, France
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, Paris Ile de France Ouest (UVSQ) University, Boulogne-Billancourt, France.,INSERM U 1018, Team 5, Centre for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Laurent Metzinger
- HEMATIM, le Centre Universitaire de Recherche en Santé (CURS), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
12
|
MicroRNAs: Emerging biomarkers for atrial fibrillation. J Cardiol 2019; 74:475-482. [PMID: 31324570 DOI: 10.1016/j.jjcc.2019.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation (AF) causes severe cardiac dysrhythmia among patients with cardiovascular diseases. AF increases the risk of stroke and heart failure and is a growing public health concern. AF is also associated with various disease conditions such as hypertension, coronary artery disease, aging, and diabetes mellitus. The mechanism underlying AF is not completely understood due to its complexity. However, experimental and clinical data have revealed that the prevalence of this disease is associated with atrial arrhythmogenic remodeling. Currently, there are no biomarkers that are available for the early diagnosis of AF. Several studies have proposed microRNAs (miRNAs) as useful biomarkers for the diagnosis of AF due to their stability and easy availability both in atrial tissue and circulating blood. miRNAs play an important role in the development of the heart. The dysregulation of miRNA expression is associated with cardiac remodeling. Genetic factors strongly contribute to the pathogenesis of AF. Recently, single nucleotide polymorphisms (SNPs) in various genes and miRNAs have been reported to be associated with AF. The aim of this review was to discuss the correlation between SNPs in miRNAs and AF, including those miRNAs that are commonly reported as potential biomarkers for AF.
Collapse
|
13
|
Jha CK, Mir R, Elfaki I, Khullar N, Rehman S, Javid J, Banu S, Chahal SMS. Potential Impact of MicroRNA-423 Gene Variability in Coronary Artery Disease. Endocr Metab Immune Disord Drug Targets 2019; 19:67-74. [PMID: 30289085 DOI: 10.2174/1871530318666181005095724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/02/2018] [Accepted: 08/27/2018] [Indexed: 01/16/2023]
Abstract
AIM Studies have evaluated the association of miRNA-423 C>A genotyping with the susceptibility to various diseases such cancers, atherosclerosis and inflammatory bowel disease but the results were contradictory. However, no studies have reported the association between miRNA-423 rs6505162 C>A polymorphism and susceptibility of coronary artery disease. MicroRNAs regulate expression of multiple genes involved in atherogenesis. Therefore, we investigated the association of microRNA-423C>T gene variations with susceptibility to coronary artery disease. METHODOLOGY This study was conducted on 100 coronary artery disease patients and 117 matched healthy controls. The genotyping of the microRNA-423 rs6505162C>A was performed by using Amplification refractory mutation system PCR method (ARMS-PCR). RESULTS A significant difference was observed in the genotype distribution among the coronary artery disease cases and sex-matched healthy controls (P=0.048). The frequencies of all three genotypes CC, CA, AA reported in the patient's samples were 55%, 41% and 4% and in the healthy controls samples were 55%, 41% and 4% respectively. Our findings showed that the microRNA-423 C>A variant was associated with an increased risk of coronary artery disease in codominant model (OR = 1.96, 95 % CI, 1.12-3.42; RR 1.35(1.05-1.75, p=0.017) of microRNA-423CA genotype and significant association in dominant model (OR 1.97, 95% CI (1.14-3.39), (CA+AA vs CC) and non-significant association for recessive model (OR=1.42, 95%CI=0.42-4.83, P=0.56, AA vs CC+CA).While, the A allele significantly increased the risk of coronary artery disease (OR =1.56, 95 % CI, 1.03-2.37; p=0.035) compared to C allele. Therefore, it was observed that more than 1.96, 1.97 and 1.56 fold increased risk of developing coronary artery disease. CONCLUSION Our findings indicated that microRNA-423 CA genotype and A allele are associated with an increased susceptibility to Coronary artery disease.
Collapse
Affiliation(s)
- Chandan K Jha
- Department of Human Genetics Punjabi University, Punjab, India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Saudi Arabia
| | | | - Suriya Rehman
- Institute of Research and Medical Consultation, Imam Abdulrahman Bin Faisal University,Dammam, Saudi Arabia
| | - Jamsheed Javid
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Shaheena Banu
- Sri Jayadeva Institute of Cardiovascular science & Research, Bangalore, India
| | | |
Collapse
|
14
|
Osmak GJ, Matveeva NA, Titov BV, Favorova OO. The Myocardial Infarction Associated Variant in the MIR196A2 Gene and Presumable Signaling Pathways to Involve miR-196a2 in the Pathological Phenotype. Mol Biol 2018. [DOI: 10.1134/s0026893318060146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Chen Z, Liu R, Niu Q, Wang H, Yang Z, Bao Y. Morphine Postconditioning alleviates autophage in ischemia-reperfusion induced cardiac injury through up-regulating lncRNA UCA1. Biomed Pharmacother 2018; 108:1357-1364. [DOI: 10.1016/j.biopha.2018.09.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023] Open
|