1
|
Niu LL, Fan HL, Cao J, Du QX, Jin QQ, Wang YY, Sun JH. The Impact of Cardiovascular Disease Gene Polymorphism and Interaction with Homocysteine on Deep Vein Thrombosis. ACS OMEGA 2024; 9:39836-39845. [PMID: 39346867 PMCID: PMC11425606 DOI: 10.1021/acsomega.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Deep vein thrombosis (DVT) affects vascular health and can even threaten life; however, its pathogenesis remains unclear. Cardiovascular disease (CVD) and DVT share common risk factors, such as dyslipidemia, aging, etc. We aimed to investigate the loci of published CVD susceptibility genes and their association with environmental factors that might be related to DVT. Genotyping by Kompetitive Allele Specific PCR (KASP), collection of lifestyle information, and determination of blood biochemical markers were performed in 165 DVT cases and 164 controls. The impact of six single nucleotide polymorphisms (SNPs) and additional potential variables on DVT morbidity was evaluated using unconditional logistic regression (ULR). To explore the high-order interactions related to genetics and the body's internal environment exposure that affect DVT, ULR, crossover analysis, and multifactor dimensionality reduction/generalized multifactor dimensionality reduction (MDR/GMDR) were employed. Sensitivity analyses were performed using the EpiR package. The polymorphisms of FGB rs1800790 and PLAT rs2020918 were significantly associated with DVT. The optimum GMDR interaction model for gene-gene (G × G) consisted of THBD rs1042579, PLAT rs2020918, and PON1 rs662. The PLAT rs2020918 and MTHFR rs1801133 polymorphisms together eliminated the maximum entropy by the MDR method. The optimum GMDR interaction model for gene-environment (G × E) consisted of MTHFR rs1801133, FGB rs1800790, PLAT rs2020918, PON1 rs662, and total homocysteine (tHcy). Those with high tHcy levels and three risk genotypes significantly increased the DVT risk. In conclusion, certain CVD-related SNPs and their interactions with tHcy may contribute to DVT. These have implications for investigating DVT etiology and developing preventive treatment plans.
Collapse
Affiliation(s)
- Lei-Lei Niu
- Shanxi
Medical University, School of Forensic Medicine, 98 University Street, Yuci District, Jinzhong, Shanxi 030600 China
| | - Hao-Liang Fan
- Shanxi
Medical University, School of Forensic Medicine, 98 University Street, Yuci District, Jinzhong, Shanxi 030600 China
| | - Jie Cao
- Shanxi
Medical University, School of Forensic Medicine, 98 University Street, Yuci District, Jinzhong, Shanxi 030600 China
| | - Qiu-Xiang Du
- Shanxi
Medical University, School of Forensic Medicine, 98 University Street, Yuci District, Jinzhong, Shanxi 030600 China
| | - Qian-Qian Jin
- Shanxi
Medical University, School of Forensic Medicine, 98 University Street, Yuci District, Jinzhong, Shanxi 030600 China
| | - Ying-Yuan Wang
- Shanxi
Medical University, School of Forensic Medicine, 98 University Street, Yuci District, Jinzhong, Shanxi 030600 China
| | - Jun-Hong Sun
- Shanxi
Medical University, School of Forensic Medicine, 98 University Street, Yuci District, Jinzhong, Shanxi 030600 China
| |
Collapse
|
2
|
Zargari M, Maadi N, Rezapour M, Bagheri A, Fallahpour S, Nosrati M, Mahrooz A. The Regulatory Variant -108C/T in the Promoter of Paraoxonase 1 (PON1) Gene has a More Important Role in Regulating PON1 Activity Compared to rs3735590 in 3'-UTR in Patients with Coronary Artery Disease. Adv Biomed Res 2024; 13:38. [PMID: 39224397 PMCID: PMC11368222 DOI: 10.4103/abr.abr_391_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background This study aimed to assess the serum activity of paraoxonase 1 (PON1) in patients with coronary artery disease (CAD) based on two genetic variants including the -108C/T variant in the promoter region and the rs3735590 variant in the binding site of miR-616 at the 3'-UTR of the PON1 gene. Materials and Methods A total of 140 subjects who exhibited clinical symptoms of CAD underwent diagnostic coronary angiography. The patients with CAD were further categorized into two groups: single-vessel disease (SVD) and multi-vessel disease (MVD). The study variants were genotyped using the restriction fragment length polymorphism (RFLP) technique after polymerase chain reaction amplification. Results After adjusting for age, gender, body mass index, metformin, and statin usage, a significant association was observed between the -108C/T variant and PON1 activity (P < 0.001). In the sub-groups of both SVD and MVD, individuals with the TC+CC genotypes exhibited significantly higher PON1 activity compared to TT homozygotes (P = 0.001 for SVD and P = 0.01 for MVD). As for the rs3735590 variant, individuals with the A allele (GA+AA genotypes) had higher PON1 activity compared to those with the GG genotype in both the SVD and MVD groups, although the results did not reach statistical significance. Conclusions Our study findings indicate a significant decrease in PON1 activity among patients with obstructive CAD. Notably, our results suggest that the -108C/T variant exerts a greater influence on PON1 activity compared to the rs3735590 variant. These findings highlight the crucial role of the -108C/T variant in modulating PON1 activity within the context of atherosclerosis.
Collapse
Affiliation(s)
- Mehryar Zargari
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negar Maadi
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maysam Rezapour
- Department of Paramedicine, Amol Paramedical Sciences School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samane Fallahpour
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Sangali P, Abdullahi S, Nosrati M, Khosravi-Asrami OF, Mahrooz A, Bagheri A. Altered expression of miR-375 and miR-541 in type 2 diabetes patients with and without coronary artery disease (CAD): the potential of miR-375 as a CAD biomarker. J Diabetes Metab Disord 2024; 23:1101-1106. [PMID: 38932834 PMCID: PMC11196532 DOI: 10.1007/s40200-024-01391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/13/2024] [Indexed: 06/28/2024]
Abstract
Background MicroRNAs (miRNAs, miRs) have been linked to beta-cell pathologies and have also shown potential as biomarkers for cardiovascular disease. This study aimed to evaluate the expression of miR-375 and miR-541 in T2D patients with and without CAD, in order to determine the potential of these miRNAs as biomarkers for assessing CAD risk. Methods This study was conducted on 106 patients with T2D who underwent coronary angiographic examination. Reverse transcription was performed using the cDNA synthesis kit. Real-time PCR was performed using the SYBR Green method and specific primers. The ability to predict which person had developed CAD was evaluated by calculating the area under the receiver-operating characteristic (ROC) curve (AUC). Results The expression of miR-375 was significantly higher in samples from CAD patients compared to those without CAD (p = 0.009). While the expression of miR-541 was also higher in CAD patients, the difference was not statistically significant. In terms of predicting CAD, miR-375 was found to be a suitable predictor with an AUC of 0.74 (p = 0.01), while miR-541 was not. With a cut-off value of 0.016 for miR-375, the sensitivity was 67% and the specificity was 80%. Conclusion Our results indicated that circulating levels of miR-375 and miR-541 were elevated in T2D patients with CAD compared to those without CAD. This suggests that miR-375 could potentially be used as a non-invasive biomarker for the diagnosis of CAD in T2D patients.
Collapse
Affiliation(s)
- Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Sara Abdullahi
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Omeh Farveh Khosravi-Asrami
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Mahrooz A. Pleiotropic functions and clinical importance of circulating HDL-PON1 complex. Adv Clin Chem 2024; 121:132-171. [PMID: 38797541 DOI: 10.1016/bs.acc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
High density lipoprotein (HDL) functions are mostly mediated through a complex proteome, particularly its enzymes. HDL can provide a scaffold for the assembly of several proteins that affect each other's function. HDL particles, particularly small, dense HDL3, are rich in paraoxonase 1 (PON1), which is an important enzyme in the functionality of HDL, so the antioxidant and antiatherogenic properties of HDL are largely attributed to this enzyme. There is an increasing need to represent a valid, reproducible, and reliable method to assay HDL function in routine clinical laboratories. In this context, HDL-associated proteins may be key players; notably PON1 activity (its arylesterase activity) may be a proper candidate because its decreased activity can be considered an important risk factor for HDL dysfunctionality. Of note, automated methods have been developed for the measurement of serum PON1 activity that facilitates its assay in large sample numbers. Arylesterase activity is proposed as a preferred activity among the different activities of PON1 for its assay in epidemiological studies. The binding of PON1 to HDL is critical for the maintenance of its activity and it appears apolipoprotein A-I plays an important role in HDL-PON1 interaction as well as in the biochemical and enzymatic properties of PON1. The interrelationships between HDL, PON1, and HDL's other components are complex and incompletely understood. The purpose of this review is to discuss biochemical and clinical evidence considering the interactions of PON1 with HDL and the role of this enzyme as an appropriate biomarker for HDL function as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Mahrooz A, Khosravi-Asrami OF, Alizadeh A, Mohmmadi N, Bagheri A, Kashi Z, Bahar A, Nosrati M, Mackness M. Can HDL cholesterol be replaced by paraoxonase 1 activity in the prediction of severe coronary artery disease in patients with type 2 diabetes? Nutr Metab Cardiovasc Dis 2023; 33:1599-1607. [PMID: 37344284 DOI: 10.1016/j.numecd.2023.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Novel biomarkers are required to improve cardiovascular disease prediction in patients with type 2 diabetes (T2D) as a high-risk population. This study was conducted to examine whether coronary artery disease (CAD) risk assessment can be improved by substituting high-density lipoprotein (HDL)-bound paraoxonase 1 (PON1) activity for HDL cholesterol (HDL-C) concentration in patients with T2D. METHODS AND RESULTS In this study, we studied 139 patients with T2D (mean age 64.12 ± 8.17 years) who underwent coronary angiographic examination. The initial rate of substrate hydrolysis was spectrophotometrically assayed in kinetic mode for measuring PON1 activity. Receiver operating characteristic (ROC) graphs are created by plotting true positivity versus false positivity. In patients with HbA1c ≥ 7%, PON1 (AUC = 0.7, p = 0.029) and nonHDL-C/PON1 (AUC = 0.75, p = 0.013) were significantly more capable of differentiating patients with CAD from those without CAD compared to HDL-C and nonHDL-C/HDL-C. Also, the predictive power of PON1 (AUC = 0.64, p = 0.029) and nonHDL-C/PON1 (AUC = 0.71, p = 0.004) were significantly higher in comparison with HDL-C and nonHDL-C/HDL-C for CAD characterization in patients aged ≥50 years. Moreover, PON1 and nonHDL-C/PON1 are associated with the incidence of CAD with an AUC of 0.7 (p = 0.026) and AUC of 0.64 (p = 0.087), respectively, among subjects with low HDL-C. CONCLUSION PON1 and the ratio of nonHDL-C/PON1 significantly improve the prediction of severe CAD in T2D patients and in patients with HbA1c ≥ 7%, age ≥50 years, or low HDL-C. PON1 activity and lipid ratios using this enzyme may be valuable as substitutes of HDL-C for increasing clinical efficacies in cardiovascular risk assessment.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Omeh Farveh Khosravi-Asrami
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Neda Mohmmadi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abouzar Bagheri
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Kashi
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adele Bahar
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mike Mackness
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Kunachowicz D, Ściskalska M, Kepinska M. Modulatory Effect of Lifestyle-Related, Environmental and Genetic Factors on Paraoxonase-1 Activity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2813. [PMID: 36833509 PMCID: PMC9957543 DOI: 10.3390/ijerph20042813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Paraoxonase-1 (PON1) is a calcium-dependent, HDL-bound serum hydrolase active toward a wide variety of substrates. PON1 displays three types of activities, among which lactonase, paraoxonase, arylesterase and phosphotriesterase can be distinguished. Not only is this enzyme a major organophosphate compound detoxifier, but it is also an important constituent of the cellular antioxidant system and has anti-inflammatory and antiatherogenic functions. The concentration and activity of PON1 is highly variable among individuals, and these differences can be both of genetic origin and be a subject of epigenetic regulation. Owing to the fact that, in recent decades, the exposure of humans to an increasing number of different xenobiotics has been continuously rising, the issues concerning the role and activity of PON1 shall be reconsidered with particular attention to growing pharmaceuticals intake, dietary habits and environmental awareness. In the following manuscript, the current state of knowledge concerning the influence of certain modifiable and unmodifiable factors, including smoking, alcohol intake, gender, age and genotype variation on PON1 activity, along with pathways through which these could interfere with the enzyme's protective functions, is presented and discussed. Since exposure to certain xenobiotics plays a key role in PON1 activity, the influence of organophosphates, heavy metals and several pharmaceutical agents is also specified.
Collapse
Affiliation(s)
| | | | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50–556 Wrocław, Poland
| |
Collapse
|
7
|
Nawaka N, Pansang P, Saniwa A, Chaibut N, Jeenduang N. Paraoxonase 1 (PON1) L55M and Q192R polymorphisms are not associated with chronic kidney disease in Thai individuals with type 2 diabetes. Int J Clin Pract 2021; 75:e14982. [PMID: 34637171 DOI: 10.1111/ijcp.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/10/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Decreased paraoxonase 1 (PON1) activity and PON1 polymorphisms have been found to be associated with chronic kidney disease (CKD) in type 2 diabetes mellitus (T2DM). OBJECTIVE This study aimed to investigate the association of the PON1 L55M and Q192R polymorphisms with CKD in T2DM, as well as their relationship with PON1 activity. METHODS A total of 166 T2DM patients, including 83 CKD patients and 83 non-CKD patients, were recruited. Biochemical parameters and paraoxonase (PONase) and arylesterase (AREase) activities were measured. The PON1 L55M and Q192R polymorphisms were analysed by a polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method. Data were analysed using the chi-square test, Student's t-test and logistic regression analysis. RESULTS Total cholesterol, TGs, LDL-C and Cr were significantly higher in CKD patients than in non-CKD patients. In contrast, the estimated glomerular filtration rate (eGFR) and AREase activity were significantly lower in CKD patients than in non-CKD patients (P < .05). The genotype and allele frequencies of the PON1 L55M and Q192R polymorphisms were not significantly different between CKD and non-CKD patients. Multivariate logistic regression analysis showed no association between the PON1 L55M and Q192R polymorphisms and CKD in T2DM. In addition, among all patients, patients with the PON1 LM genotype had significantly lower PONase activity than those with the LL genotype (P < .05). Among all patients, CKD patients and non-CKD patients, those with the PON1 RR genotype had significantly higher PONase activity but lower AREase activity than patients with the QR and QQ genotypes (P < .05). CONCLUSIONS PON1 activity was influenced by the PON1 L55M and Q192R polymorphisms. However, the PON1 L55M and Q192R polymorphisms may not be considered genetic biomarkers for CKD in T2DM.
Collapse
Affiliation(s)
- Nantiya Nawaka
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Pornprapa Pansang
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Afifah Saniwa
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nathanai Chaibut
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nutjaree Jeenduang
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Food Technology and Innovation Research Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
8
|
Shokri Y, Variji A, Nosrati M, Khonakdar-Tarsi A, Kianmehr A, Kashi Z, Bahar A, Bagheri A, Mahrooz A. Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation. Diabetes Res Clin Pract 2020; 161:108067. [PMID: 32044348 DOI: 10.1016/j.diabres.2020.108067] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/13/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Oxidant-antioxidant imbalance is involved in the etiology of different diseases, including cardiovascular diseases (CVDs), liver disorders, kidney diseases, cancers and diabetes mellitus. Antioxidant enzymes play a key role in striking an oxidant-antioxidant balance. Moreover, paraoxonase 1 (PON1) is an antioxidant enzyme that binds with high-density lipoprotein (HDL) in the circulation, and antioxidant and antiaterogenic properties of this lipoprotein are significantly associated with PON1. Research suggests PON1 contributes to the pathogenesis of certain human diseases such as type 2 diabetes (T2D). The association between PON1 and T2D appear to be reciprocal so that the disease significantly decreases PON1 levels and in turn, the genetics of PON1 may have a role the risk of susceptibility to T2D. Several factors that reduce the activity and concentration of PON1 in patients with T2D include increased glycation and loss-of-function polymorphisms. The genotypic and phenotypic evaluations of PON1 are therefore crucial for assessing the risk of cardiovascular complications in these patients, and strategies for increasing or restoring PON1 levels are useful for reducing or preventing their cardiovascular complications as their main cause of mortality. The present review aimed at discussing and emphasizing the key role of PON1 in T2D as a silent and dangerous disease.
Collapse
Affiliation(s)
- Yasaman Shokri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atena Variji
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar-Tarsi
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Biotechnology, Faculty of Advanced Madical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Kashi
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adele Bahar
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Milaciu MV, Vesa ȘC, Bocșan IC, Ciumărnean L, Sâmpelean D, Negrean V, Pop RM, Matei DM, Pașca S, Răchișan AL, Buzoianu AD, Acalovschi M. Paraoxonase-1 Serum Concentration and PON1 Gene Polymorphisms: Relationship with Non-Alcoholic Fatty Liver Disease. J Clin Med 2019; 8:jcm8122200. [PMID: 31847187 PMCID: PMC6947206 DOI: 10.3390/jcm8122200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is an important cause of chronic liver diseases around the world. Paraoxonase-1 (PON1) is an enzyme produced by the liver with an important antioxidant role. The aim of this study was to evaluate PON1 serum concentration and PON1 gene polymorphisms in patients with NAFLD. Materials and methods: We studied a group of 81 patients with NAFLD with persistently elevated aminotransferases and a control group of 81 patients without liver diseases. We collected clinical information and performed routine blood tests. We also measured the serum concentration of PON1 and evaluated the PON1 gene polymorphisms L55M, Q192R, and C-108T. Results: There was a significant difference (p < 0.001) in serum PON1 concentrations among the two groups. The heterozygous and the mutated homozygous variants (LM + MM) of the L55M polymorphism were more frequent in the NAFLD group (p < 0.001). These genotypes were found in a multivariate binary logistic regression to be independently linked to NAFLD (Odds ratio = 3.4; p = 0.04). In a multivariate linear regression model, the presence of NAFLD was associated with low PON1 concentration (p < 0.001). Conclusions: PON1 serum concentrations were diminished in patients with NAFLD, and the presence of NAFLD was linked with low PON1 concentration. The LM + MM genotypes of the PON1 L55M polymorphism were an independent predictor for NAFLD with persistently elevated aminotransferases.
Collapse
Affiliation(s)
- Mircea Vasile Milaciu
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
| | - Ștefan Cristian Vesa
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Ioana Corina Bocșan
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Lorena Ciumărnean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
- Correspondence:
| | - Dorel Sâmpelean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
| | - Vasile Negrean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
| | - Raluca Maria Pop
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Daniela Maria Matei
- Department 5—Internal Medicine, 3rd Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Sergiu Pașca
- Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Andreea Liana Răchișan
- Department of Pediatrics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania;
| | - Anca Dana Buzoianu
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Monica Acalovschi
- Doctoral School, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
Mahrooz A, Mackness M, Bagheri A, Ghaffari-Cherati M, Masoumi P. The epigenetic regulation of paraoxonase 1 (PON1) as an important enzyme in HDL function: The missing link between environmental and genetic regulation. Clin Biochem 2019; 73:1-10. [PMID: 31351988 DOI: 10.1016/j.clinbiochem.2019.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Paraoxonase 1 (PON1) is an important antiatherogenic and antioxidant enzyme in the circulation that has been associated with adverse health outcomes particularly cardiovascular disease (CVD) and other metabolic disorders. PON1 is a highly promiscuous enzyme and can hydrolyse a large variety of substrates, however, detailed structure/function studies have concluded that the natural substrates for PON1 are lipophilic lactones. The interindividual variability in PON1 activity has been mainly attributed to genetic determinants; however, it appears that the contribution of epigenetics has been ignored as a result of the lack of adequate research. CONTENT Epigenetic processes, including the histone modifications in the PON1 gene, the methylation of CpG sites in the promoter region of the PON1 gene and the microRNA modulation of PON1 expression can be responsible for the under researched gap between the environmental and genetic regulation of PON1. Environmental factors, including diet, pollution and lifestyle-related factors widely differ between individuals and populations and can cause large differences in the distribution of PON1 and it is important to note that their effects may be exerted through the epigenetic processes. This review discusses and emphasizes the importance of the epigenetic regulation of PON1 as a less-studied subject to highlight future research landscapes. SUMMARY Epigenetic regulation is known as an important contributor to the pathogenesis of human diseases, particularly multifactorial diseases such as CVD, which is life-threatening. Due to the importance of PON1 in the functionality of high-density lipoprotein (HDL) and its association with CVD, further explorations of its epigenetic regulation using advanced methods such as Methyl-Seq may lead to the identification of new epigenetic contributors that in turn may lead to targeted therapies.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mike Mackness
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghaffari-Cherati
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parisa Masoumi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
11
|
Levy D, Reichert CO, Bydlowski SP. Paraoxonases Activities and Polymorphisms in Elderly and Old-Age Diseases: An Overview. Antioxidants (Basel) 2019; 8:antiox8050118. [PMID: 31052559 PMCID: PMC6562914 DOI: 10.3390/antiox8050118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the accumulation of progressive organ dysfunction. There is much evidence linking the involvement of oxidative stress in the pathogenesis of aging. With increasing age, susceptibility to the development of diseases related to lipid peroxidation and tissue injury increases, due to chronic inflammatory processes, and production of reactive oxygen species (ROS) and free radicals. The paraoxonase (PON) gene family is composed of three members (PON1, PON2, PON3) that share considerable structural homology and are located adjacently on chromosome 7 in humans. The most studied member product is PON1, a protein associated with high-density lipoprotein with paraoxonase/esterase activity. Nevertheless, all the three proteins prevent oxidative stress. The major aim of this review is to highlight the importance of the role of PON enzymes in the aging process, and in the development of the main diseases present in the elderly: cardiovascular disease, diabetes mellitus, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Débora Levy
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Sérgio Paulo Bydlowski
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Center of Innovation and Translacional Medicine (CIMTRA), Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
12
|
Variji A, Shokri Y, Fallahpour S, Zargari M, Bagheri B, Abediankenari S, Alizadeh A, Mahrooz A. The combined utility of myeloperoxidase (MPO) and paraoxonase 1 (PON1) as two important HDL-associated enzymes in coronary artery disease: Which has a stronger predictive role? Atherosclerosis 2019; 280:7-13. [DOI: 10.1016/j.atherosclerosis.2018.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
|
13
|
Qujeq D, Mahrooz A, Alizadeh A, Boorank R. Paraoxonase-2 variants potentially influence insulin resistance, beta-cell function, and their interrelationships with alanine aminotransferase in type 2 diabetes. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2018; 23:107. [PMID: 30693042 PMCID: PMC6327680 DOI: 10.4103/jrms.jrms_88_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023]
Abstract
Background: The aim of this study was to determine whether insulin resistance, beta-cell function, and their associations with alanine aminotransferase (ALT) are affected by the functional variants of paraoxonase-2 (PON2) as an intracellular antioxidant in patients with type 2 diabetes (T2D). Materials and Methods: Quantitative insulin sensitivity check index (QUICKI) and homeostasis model assessment for beta-cell function (HOMA-BCF) were assessed in T2D patients. Insulin levels were determined using ELISA. The variants PON2-A148G and PON2-S311C were genotyped using polymerase chain reaction-based restriction fragment length polymorphism. Results: According to the PON2-G148A variant, ALT was found to be significantly correlated with QUICKI (r = −0.616, P = 0.005) and HOMA-BCF (r = 0.573, P = 0.01) in the GA + GG group; however, the correlations were not statistically significant in the AA genotypes. Based on the genotypes of PON2-S311C, there was a significant correlation between ALT with QUICKI (r = −0.540, P = 0.031) and HOMA-BCF (r = 0.567, P = 0.022) in the SC + CC group. In the multiple adjusted logistic regression analyses, considering the variants PON2-G148A and PON2-C311S as independent variables and QUICKI and HOMA-BCF as the dependent variables, both variants were significantly associated with the QUICKI (P = 0.019 for PON2-G148A and P = 0.041 for PON2-C311S). Furthermore, PON2-C311S remained significantly associated with HOMA-BCF (P = 0.03). Conclusion: These data implicate a role for the functional variants of PON2 in insulin resistance and beta-cell function as well as underscore the effective role of these variants in the associations between them and ALT. Our data contribute to our understanding of the important physiologic functions of PON2 in glucose metabolism and its related metabolic diseases.
Collapse
Affiliation(s)
- Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Alizadeh
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ruzbeh Boorank
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|