In Vivo and In Silico Analgesic Activity of
Ficus populifolia Extract Containing 2-O-β-D-(3',4',6'-Tri-acetyl)-glucopyranosyl-3-methyl Pentanoic Acid.
Int J Mol Sci 2023;
24:ijms24032270. [PMID:
36768593 PMCID:
PMC9916429 DOI:
10.3390/ijms24032270]
[Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Natural product-based structural templates have immensely shaped small molecule drug discovery, and new biogenic natural products have randomly provided the leads and molecular targets in anti-analgesic activity spheres. Pain relief achieved through opiates and non-steroidal anti-inflammatory drugs (NSAIDs) has been under constant scrutiny owing to their tolerance, dependency, and other organs toxicities and tissue damage, including harm to the gastrointestinal tract (GIT) and renal tissues. A new, 3',4',6'-triacetylated-glucoside, 2-O-β-D-(3',4',6'-tri-acetyl)-glucopyranosyl-3-methyl pentanoic acid was obtained from Ficus populifolia, and characterized through a detailed NMR spectroscopic analysis, i.e., 1H-NMR, 13C-DEPT-135, and the 2D nuclear magnetic resonance (NMR) correlations. The product was in silico investigated for its analgesic prowess, COX-2 binding feasibility and scores, drug likeliness, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, possible biosystem's toxicity using the Discovery Studio®, and other molecular studies computational software programs. The glycosidic product showed strong potential as an analgesic agent. However, an in vivo evaluation, though at strong levels of pain-relieving action, was estimated on the compound's extract owing to the quantity and yield issues of the glycosidic product. Nonetheless, the F. populifolia extract showed the analgesic potency in eight-week-old male mice on day seven of the administration of the extract's dose in acetic acid-induced writhing and hot-plate methods. Acetic acid-induced abdominal writhing for all the treated groups decreased significantly (p < 0.0001), as compared to the control group (n = 6) by 62.9%, 67.9%, and 70.9% of a dose of 100 mg/kg (n = 6), 200 mg/kg (n = 6), and 400 mg/kg (n = 6), respectively. Similarly, using the analgesia meter, the reaction time to pain sensation increased significantly (p < 0.0001), as compared to the control (n = 6). The findings indicated peripheral and central-nervous-system-mediated analgesic action of the product obtained from the corresponding extract.
Collapse