1
|
Fan R, An X, Wang Y, Zhang J, Liu S, Bai J, Li J, Lin Q, Xie Y, Xia Y, Liao J. Severe hypertriglyceridemia caused by Gpihbp1 deficiency facilitates vascular remodeling through increasing endothelial activation and oxidative stress. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159330. [PMID: 37172802 DOI: 10.1016/j.bbalip.2023.159330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerosis. However, its impact on non-atherosclerotic cardiovascular diseases remains largely unknown. Glycosylphosphatidylinositol anchored high-density lipoprotein binding protein 1 (GPIHBP1) is essential for the hydrolysis of circulating triglycerides and loss of functional GPIHBP1 causes severe HTG. In this study, we used Gpihbp1 knockout (GKO) mice to investigate the potential effects of HTG on non-atherosclerotic vascular remodeling. We compared the aortic morphology and gene expressions between three-month-old and ten-month-old GKO mice and their age-matched wild-type controls. We also conducted similar comparisons between GKO mice and wild-type controls in an angiotensin II (AngII)-induced vascular remodeling model. Our data showed that the intima-media wall of ten-month-old GKO mice but not three-month-olds was significantly thickened compared to wild-type controls. Moreover, ten-month-old GKO mice but not three-month-olds had increased aortic macrophage infiltration and perivascular fibrosis, along with increased endothelial activation and oxidative stress. Similarly, the AngII-induced vascular remodeling, as well as endothelial activation and oxidative stress, were also exacerbated in the GKO mice compared to wild-type controls. In conclusion, we demonstrated that severe HTG caused by Gpihbp1 deficiency could facilitate the onset and progression of non-atherosclerotic vascular remodeling through endothelial activation and oxidative stress in mice.
Collapse
Affiliation(s)
- Rui Fan
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Yao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Jinjin Zhang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Shuang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116004, PR China
| | - Jie Bai
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116004, PR China
| | - Jiatian Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Qiuyue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Yunlong Xia
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.
| |
Collapse
|
2
|
Al Hageh C, Chacar S, Venkatachalam T, Gauguier D, Abchee A, Chammas E, Hamdan H, O’Sullivan S, Zalloua P, Nader M. Genetic Variants in PHACTR1 & LPL Mediate Restenosis Risk in Coronary Artery Patients. Vasc Health Risk Manag 2023; 19:83-92. [PMID: 36814994 PMCID: PMC9940491 DOI: 10.2147/vhrm.s394695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/25/2022] [Indexed: 02/17/2023] Open
Abstract
Background and Objective Coronary artery disease (CAD) is a major cause of death worldwide. Revascularization via stent placement or coronary artery bypass grafting (CABG) are standard treatments for CAD. Despite a high success rate, these approaches are associated with long-term failure due to restenosis. Risk factors associated with restenosis were investigated using a case-control association study design. Methods Five thousand two hundred and forty-two patients were enrolled in this study and were assigned as follows: Stenosis Group: 3570 patients with CAD >50% without a prior stent or CABG (1394 genotyped), and Restenosis Group: 1672 patients with CAD >50% and prior stent deployment or CABG (705 genotyped). Binomial regression models were applied to investigate the association of restenosis with diabetes, hypertension, and dyslipidemia. The genetic association with restenosis was conducted using PLINK 1.9. Results Dyslipidemia is a major risk factor (Odds Ratio (OR) = 2.14, P-value <0.0001) for restenosis particularly among men (OR = 2.32, P < 0.0001), while type 2 diabetes (T2D) was associated with an increased risk of restenosis in women (OR = 1.36, P = 0.01). The rs9349379 (PHACTR1) and rs264 (LPL) were associated with an increased risk of restenosis in our patients. PHACTR1 variant was associated with increased risk of restenosis mainly in women and in diabetic patients, while the LPL variant was associated with increased risk of restenosis in men. Conclusion The rs9349379 in PHACTR1 gene is significantly associated with restenosis, this association is more pronounced in women and in diabetic patients. The rs264 in LPL gene was associated with increased risk of restenosis in male patients.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stephanie Chacar
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Thenmozhi Venkatachalam
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Dominique Gauguier
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada,Université Paris Cité, INSERM, Paris, France
| | - Antoine Abchee
- Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Elie Chammas
- School of Medicine, Lebanese University, Beirut, Lebanon
| | - Hamdan Hamdan
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Siobhan O’Sullivan
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates,Biotechnology Center, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates,Harvard T.H. Chan School of Public Health, Boston, MA, USA,Correspondence: Pierre Zalloua; Moni Nader, College of Medicine and Health Sciences, Khalifa University for Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates, Email ;
| | - Moni Nader
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE,Biotechnology Center, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Viaminate ameliorates Propionibacterium acnes-induced acne via inhibition of the TLR2/NF-κB and MAPK pathways in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-022-02379-0. [PMID: 36757484 DOI: 10.1007/s00210-022-02379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
Viaminate, a retinoic acid derivative developed in China, has been clinically used for acne treatment to regulate and control keratinocyte cell differentiation and proliferation, inhibit keratinization, reduce sebum secretion, and regulate immune and anti-inflammatory functions; however, its potential molecular mechanism has not yet been elucidated. Therefore, we induced ear acne in rats using Propionibacterium acnes and sebum application. Symptoms of ear redness, epidermal thickening, inflammatory reaction, keratin overproduction, subcutaneous oil, and triglyceride (TG) accumulation improved significantly in acne model rats treated with viaminate for 30 days. Transcriptome analysis of rat skin tissues suggested that viaminate had significant regulatory effects on fatty acid metabolism and cellular keratinization pathways. Molecular target prediction suggested that toll-like receptor 2 (TLR2) may be a key target of viaminate's therapeutic mechanism. Western blotting results confirmed that viaminate inhibited the TLR2 and its downstream pathways, nuclear factor-kappa B (NF-κB) [NF-κB inhibitor alpha (IκBα)/NF-κB-p65] and mitogen-activated protein kinases (MAPKs) [MAPK p38/c-Jun N-terminal kinase (JNK)/extracellular regulated kinase 1/2 (ERK1/2)] in acne vulgaris rats. In vitro studies revealed that viaminate treatment attenuated P. acnes proliferation and P. acnes-induced inflammatory response in human keratinocytes and has an inhibitory effect on the activation of NF-κB and MAPKs, while overexpression of TLR2 attenuated these effects. In conclusion, viaminate ameliorates P. acnes-induced acne by inhibiting the proliferation and inflammatory response of keratinocytes, ascribed to the deactivation of the TLR2-mediated NF-κB and MAPK pathways.
Collapse
|
4
|
Zeng Y, Luo Y, Wang L, Zhang K, Peng J, Fan G. Therapeutic Effect of Curcumin on Metabolic Diseases: Evidence from Clinical Studies. Int J Mol Sci 2023; 24:ijms24043323. [PMID: 36834734 PMCID: PMC9959718 DOI: 10.3390/ijms24043323] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Metabolic diseases have become a serious threat to human health worldwide. It is crucial to look for effective drugs from natural products to treat metabolic diseases. Curcumin, a natural polyphenolic compound, is mainly obtained from the rhizomes of the genus Curcuma. In recent years, clinical trials using curcumin for the treatment of metabolic diseases have been increasing. In this review, we provide a timely and comprehensive summary of the clinical progress of curcumin in the treatment of three metabolic diseases, namely type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). The therapeutic effects and underlying mechanisms of curcumin on these three diseases are presented categorically. Accumulating clinical evidence demonstrates that curcumin has good therapeutic potential and a low number of side effects for the three metabolic diseases. It can lower blood glucose and lipid levels, improve insulin resistance and reduce inflammation and oxidative stress. Overall, curcumin may be an effective drug for the treatment of T2DM, obesity and NAFLD. However, more high-quality clinical trials are still required in the future to verify its efficacy and determine its molecular mechanisms and targets.
Collapse
Affiliation(s)
- Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: ; Tel.: +86-28-61656141
| |
Collapse
|
5
|
Insight into Triglyceride-reducing Potential of Quercetin in Blood Plasma Environment. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Sustar U, Groselj U, Khan SA, Shafi S, Khan I, Kovac J, Bizjan BJ, Battelino T, Sadiq F. A homozygous variant in the GPIHBP1 gene in a child with severe hypertriglyceridemia and a systematic literature review. Front Genet 2022; 13:983283. [PMID: 36051701 PMCID: PMC9424485 DOI: 10.3389/fgene.2022.983283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Due to nonspecific symptoms, rare dyslipidaemias are frequently misdiagnosed, overlooked, and undertreated, leading to increased risk for severe cardiovascular disease, pancreatitis and/or multiple organ failures before diagnosis. Better guidelines for the recognition and early diagnosis of rare dyslipidaemias are urgently required. Methods: Genomic DNA was isolated from blood samples of a Pakistani paediatric patient with hypertriglyceridemia, and from his parents and siblings. Next-generation sequencing (NGS) was performed, and an expanded dyslipidaemia panel was employed for genetic analysis. Results: The NGS revealed the presence of a homozygous missense pathogenic variant c.230G>A (NM_178172.6) in exon 3 of the GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1) gene resulting in amino acid change p.Cys77Tyr (NP_835466.2). The patient was 5.5 years old at the time of genetic diagnosis. The maximal total cholesterol and triglyceride levels were measured at the age of 10 months (850.7 mg/dl, 22.0 mmol/L and 5,137 mg/dl, 58.0 mmol/L, respectively). The patient had cholesterol deposits at the hard palate, eruptive xanthomas, lethargy, poor appetite, and mild splenomegaly. Both parents and sister were heterozygous for the familial variant in the GPIHBP1 gene. Moreover, in the systematic review, we present 62 patients with pathogenic variants in the GPIHBP1 gene and clinical findings, associated with hyperlipoproteinemia. Conclusion: In a child with severe hypertriglyceridemia, we identified a pathogenic variant in the GPIHBP1 gene causing hyperlipoproteinemia (type 1D). In cases of severe elevations of plasma cholesterol and/or triglycerides genetic testing for rare dyslipidaemias should be performed as soon as possible for optimal therapy and patient management.
Collapse
Affiliation(s)
- Ursa Sustar
- Department of Endocrinology, Diabetes and Metabolism, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolism, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Urh Groselj, ; Fouzia Sadiq,
| | - Sabeen Abid Khan
- Department of Paediatrics, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saeed Shafi
- Department of Anatomy, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Iqbal Khan
- Department of Vascular Surgery, Shifa International Hospital, Islamabad, Pakistan
- Department of Vascular Surgery, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Jernej Kovac
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Fouzia Sadiq
- Directorate of Research, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- *Correspondence: Urh Groselj, ; Fouzia Sadiq,
| |
Collapse
|
7
|
Zhang M, Zhu Y, Zhu Z. Research advances in the influence of lipid metabolism on cognitive impairment. IBRAIN 2022; 10:83-92. [PMID: 38682015 PMCID: PMC11045198 DOI: 10.1002/ibra.12018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 05/01/2024]
Abstract
Cognitive impairment (CI) is a mental disorder related to cognition and understanding, which is mainly categorized into mild CI and senile dementia. This disease is associated with multiple factors, such as chronic brain injury, aging, chronic systemic disease, mental state, and psychological factors. However, the pathological mechanism of CI remains unclear; it is usually associated with such underlying diseases as diabetes and hyperlipidemia. It has been demonstrated that abundant lipid metabolism indexes in the human body are closely related to CI, including total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoprotein, and so forth. As a crucial risk factor for CI, hyperlipidemia is of great significance in the occurrence and development of CI. However, the specific correlation between dyslipidemia and CI is still not fully elucidated. Besides, the efficacy of lipid-lowering drugs in the prophylaxis and treatment of CI has not been clarified. In this study, relevant advances in the influence of lipid metabolism disorders in CI will be reviewed, in an attempt to explore the effect of mediating blood lipid levels on the prophylaxis and treatment of CI, thus providing a reference for its clinical management.
Collapse
Affiliation(s)
- Min Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Suining Central HospitalSuiningSichuanChina
| | - Yu‐Hang Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
8
|
Liu S, Wang Z, Zheng X, Zhang Y, Wei S, OuYang H, Liang J, Chen N, Zeng W, Jiang J. Case Report: Successful Management of a 29-Day-Old Infant With Severe Hyperlipidemia From a Novel Homozygous Variant of GPIHBP1 Gene. Front Pediatr 2022; 10:792574. [PMID: 35359903 PMCID: PMC8960264 DOI: 10.3389/fped.2022.792574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Severe hyperlipidemia is characterized by markedly elevated blood triglyceride levels and severe early-onset cardiovascular diseases, pancreatitis, pancreatic necrosis or persistent multiple organ failure if left untreated. It is a rare autosomal recessive metabolic disorder originated from the variants of lipoprotein lipase gene, and previous studies have demonstrated that most cases with severe hyperlipidemia are closely related to the variants of some key genes for lipolysis, such as LPL, APOC2, APOA5, LMF1, and GPIHBP1. Meanwhile, other unidentified causes also exist and are equally worthy of attention. METHODS The 29-day-old infant was diagnosed with severe hyperlipidemia, registering a plasma triglyceride level as high as 25.46 mmol/L. Whole exome sequencing was conducted to explore the possible pathogenic gene variants for this patient. RESULTS The infant was put on a low-fat diet combined with pharmacological therapy, which was successful in restraining the level of serum triglyceride and total cholesterol to a low to medium range during the follow-ups. The patient was found to be a rare novel homozygous duplication variant-c.45_48dupGCGG (Pro17Alafs*22) in GPIHBP1 gene-leading to a frameshift which failed to form the canonical termination codon TGA. The mutant messenger RNA should presumably produce a peptide consisting of 16 amino acids at the N-terminus, with 21 novel amino acids on the heels of the wild-type protein. CONCLUSIONS Our study expands on the spectrum of GPIHBP1 variants and contributes to a more comprehensive understanding of the genetic diagnosis, genetic counseling, and multimodality therapy of families with severe hyperlipidemia. Our experience gained in this study is also contributory to a deeper insight into severe hyperlipidemia and highlights the importance of molecular genetic tests.
Collapse
Affiliation(s)
- Shu Liu
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhiqing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianhua Zheng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ye Zhang
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Sisi Wei
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Haimei OuYang
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jinqun Liang
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Nuan Chen
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Weihong Zeng
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianhui Jiang
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
9
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
10
|
Changes in serum levels of angiopoietin-like protein-8 and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 after ezetimibe therapy in patients with dyslipidemia. Clin Chim Acta 2020; 510:675-680. [PMID: 32858055 DOI: 10.1016/j.cca.2020.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/26/2020] [Accepted: 08/21/2020] [Indexed: 01/09/2023]
Abstract
Changes in serum levels of angiopoietin-like protein-8 (ANGPTL8) and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) in patients with dyslipidemia after ezetimibe therapy remain to be elucidated. Thirty-eight patients who initially received ezetimibe and were followed for 16 weeks were enrolled. Various parameters were investigated before and after 16 weeks of ezetimibe treatment in all patients. In addition, the patients were also divided into metabolic syndrome (MetS) (n = 22) and Non-MetS (n = 16) groups, and various parameters were compared between these groups. ANGPTL8 was significantly positively correlated with triglyceride (TG) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) before treatment in all patients and in the MetS group. After treatment, TC and LDL-C were significantly decreased in all patients, and in both the MetS and Non-MetS groups, whereas there were no changes in TG or HDL-C. Serum levels of remnant-like particle cholesterol (RLP-C) significantly decreased in all patients and in the MetS group. The ANGPTL8 level before treatment was significantly positively associated with TG and negatively correlated with HDL-C in all patients and in the MetS group. ANGPTL8 and GPIHBP1were significantly decreased after treatment in all patients. GPIHBP1 was also significantly decreased after treatment in both groups. In conclusion, this is the first report to support the possibility of a new effect of ezetimibe therapy. Ezetimibe significantly decreased the serum level of LDL-C, but not TG or HDL-C, while reducing ANGPTL8 and GPIHBP1 in all patients with dyslipidemia. In addition, ezetimibe significantly decreased RLP-C levels in the MetS group.
Collapse
|
11
|
Xiao B, Mao J, Sun B, Zhang W, Wang Y, Wang P, Ruan Z, Xi W, Li H, Zhou J, Lu Y, Ding Q, Wang X, Liu J, Yan J, Luo C, Shi X, Yang R, Xi X. Integrin β3 Deficiency Results in Hypertriglyceridemia via Disrupting LPL (Lipoprotein Lipase) Secretion. Arterioscler Thromb Vasc Biol 2020; 40:1296-1310. [PMID: 32237906 DOI: 10.1161/atvbaha.119.313191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Integrin β3 is implicated in numerous biological processes such as its relevance to blood triglyceride, yet whether β3 deficiency affects this metabolic process remains unknown. Approach and Results: We showed that the Chinese patients with β3-deficient Glanzmann thrombasthenia had a 2-fold higher serum triglyceride level together with a lower serum LPL (lipoprotein lipase) level than those with an αIIb deficiency or healthy subjects. The β3 knockout mice recapitulated these phenotypic features. The elevated plasma triglyceride level was due to impaired LPL-mediated triglyceride clearance caused by a disrupted LPL secretion. Further analysis revealed that β3 directly bound LPL via a juxtamembrane TIH (threonine isoleucine histidine)720-722 motif in its cytoplasmic domain and functioned as an adaptor protein by interacting with LPL and PKD (protein kinase D) to form the PKD/β3/LPL complex that is required for β3-mediated LPL secretion. Furthermore, the impaired triglyceride clearance in β3 knockout mice could be corrected by adeno-associated virus serotype 9 (AAV9)-mediated delivery of wild-type but not TIH720-722-mutated β3 genes. CONCLUSIONS This study reveals a hypertriglyceridemia in both β3-deficient Chinese patients and mice and provides novel insights into the molecular mechanisms of the significant roles of β3 in LPL secretion and triglyceride metabolism, drawing attention to the metabolic consequences in patients with β3-deficient Glanzmann thrombasthenia.
Collapse
Affiliation(s)
- Bing Xiao
- From the State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China (B.X., X.X.)
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Boyang Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (B.S., H.L., R.Y.)
| | - Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Yun Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Wenda Xi
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.X.)
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (B.S., H.L., R.Y.)
| | - Jingyi Zhou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., Y.L., Q.D., X.W.)
| | - Yide Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., Y.L., Q.D., X.W.)
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., Y.L., Q.D., X.W.)
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., Y.L., Q.D., X.W.)
| | - Jingqiu Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (J.L., C.L.)
| | - Jinsong Yan
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, China (J.Y.)
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (J.L., C.L.)
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China (X.S.)
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (B.S., H.L., R.Y.)
| | - Xiaodong Xi
- From the State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China (B.X., X.X.).,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| |
Collapse
|
12
|
Jia Z, Zhao C, Wang M, Zhao X, Zhang W, Han T, Xia Q, Han Z, Lin R, Li X. Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome. Biomed Pharmacother 2020; 121:109558. [DOI: 10.1016/j.biopha.2019.109558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
|