1
|
Manor J, Jangam SV, Chung HL, Bhagwat P, Andrews J, Chester H, Kondo S, Srivastav S, Botas J, Moser AB, Huguenin SM, Wangler MF. Genetic analysis of the X-linked Adrenoleukodystrophy ABCD1 gene in Drosophila uncovers a role in Peroxisomal dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614586. [PMID: 39386423 PMCID: PMC11463603 DOI: 10.1101/2024.09.23.614586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a progressive neurodegenerative disorder caused by a loss-of-function (LOF) mutation in the ATP-binding cassette subfamily D member 1 (ABCD1) gene, leading to the accumulation of very long-chain fatty acids (VLCFAs). This disorder exhibits striking heterogeneity; some male patients develop an early childhood neuroinflammatory demyelination disorder, while other patients, including adult males and most affected female carriers, experience a chronic progressive myelopathy. Adrenocortical failure is observed in almost all male patients, with age of onset varying sometimes being the first diagnostic finding. The gene underlying this spectrum of disease encodes an ATP-binding cassette (ABC) transporter that localizes to peroxisomes and facilitates VLCFA transport. X-ALD is considered a single peroxisomal component defect and does not play a direct role in peroxisome assembly. Drosophila models of other peroxisomal genes have provided mechanistic insight into some of the neurodegenerative mechanisms with reduced lifespan, retinal degeneration, and VLCFA accumulation. Here, we perform a genetic analysis of the fly ABCD1 ortholog Abcd1 (CG2316). Knockdown or deficiency of Abcd1 leads to VLCFA accumulation, salivary gland defects, locomotor impairment and retinal lipid abnormalities. Interestingly, there is also evidence of reduced peroxisomal numbers. Flies overexpressing the human cDNA for ABCD1 display a wing crumpling phenotype characteristic of the pex2 loss-of-function. Surprisingly, overexpression of human ABCD1 appears to inhibit or overwhelm peroxisomal biogenesis to levels similar to null mutations in fly pex2, pex16 and pex3. Drosophila Abcd1 is therefore implicated in peroxisomal number, and overexpression of the human ABCD1 gene acts a potent inhibitor of peroxisomal biogenesis in flies.
Collapse
Affiliation(s)
- Joshua Manor
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hyung-lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Jonathan Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hillary Chester
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Shu Kondo
- Tokyo University of Science, Faculty of Advanced Engineering, Department of Biological Science and Technology, Tokyo, Japan
| | - Saurabh Srivastav
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ann B. Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Suzette M. Huguenin
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
2
|
Jia Y, Zhang Y, Wang W, Lei J, Ying Z, Yang G. Structural and functional insights of the human peroxisomal ABC transporter ALDP. eLife 2022; 11:e75039. [PMID: 36374178 PMCID: PMC9683791 DOI: 10.7554/elife.75039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Adrenoleukodystrophy protein (ALDP) is responsible for the transport of very-long-chain fatty acids (VLCFAs) and corresponding CoA-esters across the peroxisomal membrane. Dysfunction of ALDP leads to peroxisomal metabolic disorder exemplified by X-linked adrenoleukodystrophy (ALD). Hundreds of ALD-causing mutations have been identified on ALDP. However, the pathogenic mechanisms of these mutations are restricted to clinical description due to limited structural and biochemical characterization. Here we report the cryo-electron microscopy structure of human ALDP with nominal resolution at 3.4 Å. ALDP exhibits a cytosolic-facing conformation. Compared to other lipid ATP-binding cassette transporters, ALDP has two substrate binding cavities formed by the transmembrane domains. Such structural organization may be suitable for the coordination of VLCFAs. Based on the structure, we performed integrative analysis of the cellular trafficking, protein thermostability, ATP hydrolysis, and the transport activity of representative mutations. These results provide a framework for understanding the working mechanism of ALDP and pathogenic roles of disease-associated mutations.
Collapse
Affiliation(s)
- Yutian Jia
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Yanming Zhang
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Wenhao Wang
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Zhengxin Ying
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Guanghui Yang
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| |
Collapse
|
3
|
Wang X, Ruan H, Zong Z, Mao F, Wang Y, Jiao Y, Xu L, Yang T, Li W, Liu X. A simulated strategy for analysis of Short- to Long- chain fatty acids in mouse serum beyond chemical standards. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122895. [PMID: 34403913 DOI: 10.1016/j.jchromb.2021.122895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Broadening coverage in fatty acid (FA) analysis benefits the understanding of metabolic regulation in biological system. However, the limited access of chemical standards makes it challenging. In this work, we introduced a simulation assisted strategy to analyze short-, medium-, long- and very-long-chain fatty acids beyond the use of chemical standards. This targeted analysis in selected reaction monitoring (SRM) mode incorporated 3-nitrophenylhydrazine derivatization and mathematical simulation of ion transitions, collision energies, RF values and retention times to identify and quantify the fatty acids without chemical standards. Serum analysis using high resolution mass spectrometry coupled with paired labeling was employed to refine the computational retention times. Based on the simulation, 116 free fatty acids from C1 to C24 were covered in a single analysis on use of 34 standard chemicals. Background interference is commonly observed in fatty acid analysis. For certain fatty acids, e.g. acetic acid or palmitic acid, reliable quantitation is largely restricted by contamination level instead of detection limit. Therefore, the background interference and quantifiable serum volume required for each fatty acid were also evaluated. At least 20 µL serum was suggested to cover most molecules. Using this approach, a total of 66 free fatty acids with various chain lengths and saturations were detected in NTCP knockout mice serum, of which 34 FAs were confirmed by chemical standards and 32 FAs were potentially assigned based on the simulation. Gender dependent fatty acid regulation was observed by NTCP knockout. This work provides a unique strategy that enables to broaden the fatty acid coverage with the absence of chemical standards and is applicable to other derivatizations.
Collapse
Affiliation(s)
- Xueying Wang
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility (Beijing), Tsinghua University, China
| | - Huabin Ruan
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility (Beijing), Tsinghua University, China
| | - Zhaoyun Zong
- School of Life Sciences, Tsinghua University, China
| | - Fengfeng Mao
- National Institute of Biological Sciences, Beijing, China
| | - Yusong Wang
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility (Beijing), Tsinghua University, China
| | - Yupei Jiao
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility (Beijing), Tsinghua University, China
| | - Lina Xu
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility (Beijing), Tsinghua University, China
| | - Tao Yang
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility (Beijing), Tsinghua University, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility (Beijing), Tsinghua University, China.
| |
Collapse
|
4
|
Shrestha R, Chen Z, Gao Z, Chen Y, Okada E, Ukawa S, Nakagawa T, Nakamura K, Tamakoshi A, Chiba H, Hui SP. HPLC with spectrophotometric or mass spectrometric detection for quantifying very-long chain fatty acids in human plasma and its association with cardiac risk factors. Ann Clin Biochem 2021; 58:400-410. [PMID: 33730871 DOI: 10.1177/00045632211007157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We developed and compared two liquid chromatography methods, one with UV/Visible spectrophotometric detection (HPLC) and the other with mass spectrometric detection (LC-MS), for quantifying very-long chain fatty acids (VLCFA) in human plasma. Association of VLCFA with various cardiovascular risk factors were evaluated. METHOD Fasting blood samples were collected from 541 human volunteers (242 men and 299 women; mean age ±SD, 58.9 ± 12.4 years), including 429 and 112 individuals with and without hypertriglyceridemia, respectively. Esterified VLCFA were saponified and derivatized with 2-nitrophenylhydrazine. Separation of VLCFA species was achieved with C4 Mightysil column (HPLC) and Ascentis Express Phenyl-Hexyl column (LC-MS) followed by spectrophotometric and selected-reaction monitoring mode of mass spectrometric detection, respectively. RESULTS The HPLC assay of VLCFA was precise with intra-assay imprecision of 2.5% to 6.9% and inter-assay imprecision of 3.2% to 9.5%. Moreover, there was an excellent correlation (r > 0.96) between HPLC and LC-MS methods. The 95 percentile reference intervals (RI; upper limit) of VLCFA were determined to be 41.3 µmol/L in healthy volunteers. Plasma VLCFA were significantly correlated with triglycerides (Spearman's ρ = 0.306, P < 0.001) and total cholesterol (Spearman's ρ = 0.251, P < 0.001). All species of VLCFA were significantly elevated in hypertriglyceridaemic individuals compared with control. CONCLUSION We established LC-based assays of VLCFA with either spectrophotometry or mass spectrometry as a detection system. Hypertriglyceridaemia is significantly associated with elevated concentration of each species of VLCFA.
Collapse
Affiliation(s)
- Rojeet Shrestha
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Zijun Gao
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Emiko Okada
- Department of Nutritional Epidemiology and Shokuiku, National Institute of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Shigekazu Ukawa
- Research Unit of Advanced Interdisciplinary Care Science, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | | | - Koshi Nakamura
- Department of Public Health and Hygiene, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Hokkaido, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|