1
|
Kofotolios I, Bonios MJ, Adamopoulos M, Mourouzis I, Filippatos G, Boletis JN, Marinaki S, Mavroidis M. The Han:SPRD Rat: A Preclinical Model of Polycystic Kidney Disease. Biomedicines 2024; 12:362. [PMID: 38397964 PMCID: PMC10887417 DOI: 10.3390/biomedicines12020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) stands as the most prevalent hereditary renal disorder in humans, ultimately culminating in end-stage kidney disease. Animal models carrying mutations associated with polycystic kidney disease have played an important role in the advancement of ADPKD research. The Han:SPRD rat model, carrying an R823W mutation in the Anks6 gene, is characterized by cyst formation and kidney enlargement. The mutated protein, named Samcystin, is localized in cilia of tubular epithelial cells and seems to be involved in cystogenesis. The homozygous Anks6 mutation leads to end-stage renal disease and death, making it a critical factor in kidney development and function. This review explores the utility of the Han:SPRD rat model, highlighting its phenotypic similarity to human ADPKD. Specifically, we discuss its role in preclinical trials and its importance for investigating the pathogenesis of the disease and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Ioannis Kofotolios
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Michael J. Bonios
- Heart Failure and Transplant Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - Markos Adamopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Gerasimos Filippatos
- Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - John N. Boletis
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Smaragdi Marinaki
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| |
Collapse
|
2
|
Liu K, Chen R, Wang X, Gong Y, Shi J, Gu B, Zhou Y, Cai W. Biallelic ANKS6 null variants cause notable extrarenal phenotypes in a nephronophthisis patient and lead to hepatobiliary abnormalities by YAP1 deficiency. Clin Genet 2023; 104:625-636. [PMID: 37525964 DOI: 10.1111/cge.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
The ankyrin repeat and sterile alpha motif domain containing 6 (ANKS6) gene, encoding an inversin compartment protein of the primary cilium, was recently reported as a pathogenic gene of nephronophthisis (MIM PS256100). Extrarenal manifestations are frequently observed in this disease, however, potential genotype-phenotype correlations and the underlying mechanisms remain poorly understood. Here we described an infant with kidney failure, hepatobiliary abnormalities, and heart disease, in whom whole exome sequencing identified compound heterozygous variants in ANKS6, including a novel nonsense variant p.Trp458* and a recurrent splicing variant c.2394+1G > A. mRNA expression studies showed that the splicing variant caused aberrant mRNA splicing with exon 13 skipping and the biallelic variants were predicted to cause loss of ANKS6 function. We systematically characterized the clinical and genetic spectra of the disease and revealed that biallelic null variants in ANKS6 cause more severe kidney disease and more extrarenal manifestations, thus establishing a clear genotype-phenotype correlation for the disease. Further evaluations showed that ANKS6 deficiency reduced YAP1 expression in the patient's bile duct epithelium and ANKS6 promotes YAP1 transcriptional activity in a dose-dependent manner, indicating that loss of ANKS6 function causes hepatobiliary abnormalities through YAP1 deficiency during biliary morphogenesis and development, which may offer new therapeutic targets.
Collapse
Affiliation(s)
- Keqiang Liu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ru Chen
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Wang
- Department of Pathology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Gong
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Shi
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beilin Gu
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
3
|
Wang D, Chen X, Wen Q, Li Z, Chen W, Chen W, Wang X. A single heterozygous nonsense mutation in the TTC21B gene causes adult-onset nephronophthisis 12: A case report and review of literature. Mol Genet Genomic Med 2022; 10:e2076. [PMID: 36263627 PMCID: PMC9747551 DOI: 10.1002/mgg3.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nephronophthisis type 12 (NPHP 12) is a rare cilia-related cystic kidney disease, caused by TTC21B mutation, mainly involving the kidneys, which generally occurs in children. Our study aimed to illustrate its clinical, pathological and genetic characteristics by reporting an adult-onset case of NPHP 12 caused by a single heterozygous nonsense mutation of TTC21B confirmed by renal histology and whole exome sequencing and reviewing related literature with a comparative analysis of the clinical features of each case. It will further increase the recognition of this rare kidney genetic disease, which sometimes can manifest as an adult disease. RESULTS A 33-years-old man showed a chronic disease course, and he exhibited slight renal dysfunction (CKD stage 3, eGFR = 49 ml/[min* 1.73 m2]) with renal tubular proteinuria, without any extrarenal manifestations, congenital malformation history of kidney disease, or family hereditary disease. Renal histological findings showed substantial interstitial fibrosis with some irregular and tortuous tubules with complex branches and segmental thickening and splitting of the tubular basement membrane. The patient was diagnosed with chronic interstitial nephritis for an unknown reason clinically. Further genetic analysis revealed a single heterozygous nonsense mutation in the TTC21B gene and NPHP 12 was diagnosed finally. CONCLUSION A single heterozygous mutation in the TTC21B gene may cause atypical NPHP12, which had a relatively later onset and milder clinical symptoms without developmental abnormalities. Therefore, for unexplained adult-onset chronic interstitial nephritis with unusual changes of renal tubules and interstitial fibrosis, even without a clear history of hereditary kidney disease, genetic testing is still recommended. The correct diagnosis of this rare adult-onset hereditary nephropathy can avoid unnecessary treatment.
Collapse
Affiliation(s)
- Dan Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Xionghui Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Qiong Wen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Zhijian Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wei Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wenfang Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,Department of PathologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xin Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Nardozi D, Palumbo S, Khan AUM, Sticht C, Bieback K, Sadeghi S, Kluth MA, Keese M, Gretz N. Potential Therapeutic Effects of Long-Term Stem Cell Administration: Impact on the Gene Profile and Kidney Function of PKD/Mhm (Cy/+) Rats. J Clin Med 2022; 11:jcm11092601. [PMID: 35566725 PMCID: PMC9102853 DOI: 10.3390/jcm11092601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic kidney disease (CKD) is a heterogeneous group of genetic disorders and one of the most common causes of end-stage renal disease. Here, we investigate the potential effects of long-term human stem cell treatment on kidney function and the gene expression profile of PKD/Mhm (Cy/+) rats. Human adipose-derived stromal cells (ASC) and human skin-derived ABCB5+ stromal cells (2 × 106) were infused intravenously or intraperitoneally monthly, over 6 months. Additionally, ASC and ABCB5+-derived conditioned media were administrated intraperitoneally. The gene expression profile results showed a significant reprogramming of metabolism-related pathways along with downregulation of the cAMP, NF-kB and apoptosis pathways. During the experimental period, we measured the principal renal parameters as well as renal function using an innovative non-invasive transcutaneous device. All together, these analyses show a moderate amelioration of renal function in the ABCB5+ and ASC-treated groups. Additionally, ABCB5+ and ASC-derived conditioned media treatments lead to milder but still promising improvements. Even though further analyses have to be performed, the preliminary results obtained in this study can lay the foundations for a novel therapeutic approach with the application of cell-based therapy in CKD.
Collapse
Affiliation(s)
- Daniela Nardozi
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
- Vascular Surgery, University Hospital Mannheim, 68167 Mannheim, Germany;
| | - Stefania Palumbo
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
| | - Arif ul Maula Khan
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, German Red Cross Blood Service Baden-Württemberg—Hessen, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Samar Sadeghi
- RHEACELL GmbH & Co.KG/TICEBA GmbH, 69120 Heidelberg, Germany; (S.S.); (M.A.K.)
| | - Mark Andreas Kluth
- RHEACELL GmbH & Co.KG/TICEBA GmbH, 69120 Heidelberg, Germany; (S.S.); (M.A.K.)
| | - Michael Keese
- Vascular Surgery, University Hospital Mannheim, 68167 Mannheim, Germany;
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
- Correspondence:
| |
Collapse
|