1
|
Sadler RA, Shoveller AK, Shandilya UK, Charchoglyan A, Wagter-Lesperance L, Bridle BW, Mallard BA, Karrow NA. Beyond the Coagulation Cascade: Vitamin K and Its Multifaceted Impact on Human and Domesticated Animal Health. Curr Issues Mol Biol 2024; 46:7001-7031. [PMID: 39057059 PMCID: PMC11276079 DOI: 10.3390/cimb46070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin K (VK) is an essential micronutrient impacting many systems in the body. This lipid-soluble vitamin is found in various plant and animal products and is absorbed via the lymphatic system. This biomolecule's importance to human health includes but is not limited to its promotion of brain, cardiovascular, bone, and immune functions. These biological properties are also necessary for maintaining domesticated animal health. The synergistic impact of both VK and vitamin D (VD) maximizes these health benefits, specifically for the circulatory and skeletal systems. This manuscript reviews VK's properties, molecular structures, nutrikinetics, mechanisms of action, daily requirements, safety in supplemental form, biomarkers used for its detection, and impacts on various organs. The purpose of synthesizing this information is to evaluate the potential uses of VK for the treatment or prevention of diseases.
Collapse
Affiliation(s)
- Rebecka A. Sadler
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauraine Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
| |
Collapse
|
2
|
Shen Y. Pathogenesis and Mechanism of Uremic Vascular Calcification. Cureus 2024; 16:e64771. [PMID: 39026575 PMCID: PMC11255132 DOI: 10.7759/cureus.64771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
This review elucidates the modeling and mechanistic studies of vascular calcification in chronic kidney disease - mineral and bone disorder. In patients with chronic kidney disease, metabolic abnormalities in uremic toxins, including phosphate and indole sulfate, are closely associated with vascular calcification. Vitamin K, vascular circadian clock, and autophagy are also key factors involved in vascular calcification. Furthermore, communication between endothelial cells and smooth muscle cells also plays a pivotal role in the regulation of this process. Together, these factors accelerate vascular calcification progression and increase the risk of cardiovascular events. Therefore, timely intervention for vascular calcification is essential for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Yingjing Shen
- Nephrology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai, CHN
| |
Collapse
|
3
|
Neofytou IE, Stamou A, Demopoulos A, Roumeliotis S, Zebekakis P, Liakopoulos V, Stamellou E, Dounousi E. Vitamin K for Vascular Calcification in Kidney Patients: Still Alive and Kicking, but Still a Lot to Learn. Nutrients 2024; 16:1798. [PMID: 38931153 PMCID: PMC11206649 DOI: 10.3390/nu16121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Patients with chronic kidney disease (CKD) suffer disproportionately from a high burden of cardiovascular disease, which, despite recent scientific advances, remains partly understood. Vascular calcification (VC) is the result of an ongoing process of misplaced calcium in the inner and medial layers of the arteries, which has emerged as a critical contributor to cardiovascular events in CKD. Beyond its established role in blood clotting and bone health, vitamin K appears crucial in regulating VC via vitamin K-dependent proteins (VKDPs). Among these, the matrix Gla protein (MGP) serves as both a potent inhibitor of VC and a valuable biomarker (in its inactive form) for reflecting circulating vitamin K levels. CKD patients, especially in advanced stages, often present with vitamin K deficiency due to dietary restrictions, medications, and impaired intestinal absorption in the uremic environment. Epidemiological studies confirm a strong association between vitamin K levels, inactive MGP, and increased CVD risk across CKD stages. Based on the promising results of pre-clinical data, an increasing number of clinical trials have investigated the potential benefits of vitamin K supplementation to prevent, delay, or even reverse VC, but the results have remained inconsistent.
Collapse
Affiliation(s)
- Ioannis Eleftherios Neofytou
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Aikaterini Stamou
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Antonia Demopoulos
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Pantelis Zebekakis
- 1st Department of Internal Medicine, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Eleni Stamellou
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.S.); (E.D.)
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52062 Aachen, Germany
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.S.); (E.D.)
| |
Collapse
|
4
|
Hao J, Zhang B, Wang B, Zhang M, Fan W, Li W. Effects of dietary vitamin K3 supplementation on production performance, egg quality, vitamin K-dependent proteins, and antioxidant properties in breeding geese during the laying period. Poult Sci 2023; 102:102880. [PMID: 37419050 PMCID: PMC10344679 DOI: 10.1016/j.psj.2023.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
The aim of this work was to investigate the effects of dietary vitamin K3 (VK3) supplementation on production performance, egg quality, vitamin K-dependent proteins, and antioxidant properties in breeding geese during the laying period. A total of one hundred twenty 82-wk-old Wulong geese with similar body weights were randomly divided into 6 groups with 4 replicates and 5 geese each (1 male and 4 female). The geese in the control group were fed a basal diet, and the geese in the treatment groups were fed diets supplemented with different levels of VK3 (2.5, 5.0, 7.5, 10.0, and 12.5 mg/kg) for 11 wk. Dietary VK3 supplementation linearly and quadratically increased feed intake, egg mass, egg weight, and egg production (P < 0.05). Increasing VK3 levels linearly and quadratically increased albumen height, shell thickness and Haugh unit of eggs (P < 0.05). VK3 reduced osteocalcin (OC) and uncarboxylated osteocalcin (ucOC) levels in the serum. Dietary VK3 addition linearly decreased serum malondialdehyde (MDA) levels (P < 0.01). There was linear and quadratic effect in the activity of serum total superoxide dismutase (T-SOD) (P < 0.01), and linear effect in serum total antioxidant capacity (T-AOC) (P < 0.01). In conclusion, dietary VK3 supplementation enhanced the production performance, egg quality, vitamin K-dependent proteins, and antioxidant properties in breeding geese during the laying period. The optimal dose of dietary VK3 supplementation was 10.0 mg/kg.
Collapse
Affiliation(s)
- Jianzhong Hao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Baowei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Mingai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenlei Fan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Ziemińska M, Pawlak D, Sieklucka B, Chilkiewicz K, Pawlak K. Vitamin K-Dependent Carboxylation of Osteocalcin in Bone-Ally or Adversary of Bone Mineral Status in Rats with Experimental Chronic Kidney Disease? Nutrients 2022; 14:nu14194082. [PMID: 36235734 PMCID: PMC9572286 DOI: 10.3390/nu14194082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic kidney disease (CKD) commonly occurs with vitamin K (VK) deficiency and impaired bone mineralization. However, there are no data explaining the metabolism of endogenous VK and its role in bone mineralization in CKD. In this study, we measured serum levels of phylloquinone (VK1), menaquinone 4 and 7 (MK4, MK7), and VK-dependent proteins: osteocalcin, undercarboxylated osteocalcin (Glu-OC), and undercarboxylated matrix Gla protein (ucMGP). The carboxylated osteocalcin (Gla-OC), Glu-OC, and the expression of genes involved in VK cycle were determined in bone. The obtained results were juxtaposed with the bone mineral status of rats with CKD. The obtained results suggest that the reduced VK1 level observed in CKD rats may be caused by the accelerated conversion of VK1 to the form of menaquinones. The bone tissue possesses all enzymes, enabling the conversion of VK1 to menaquinones and VK recycling. However, in the course of CKD with hyperparathyroidism, the intensified osteoblastogenesis causes the generation of immature osteoblasts with impaired mineralization. The particular clinical significance seems to have a finding that serum osteocalcin and Glu-OC, commonly used biomarkers of VK deficiency, could be inappropriate in CKD conditions, whereas Gla-OC synthesized in bone appears to have an adverse impact on bone mineral status in this model.
Collapse
Affiliation(s)
- Marta Ziemińska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Katarzyna Chilkiewicz
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-7485600
| |
Collapse
|
6
|
Cemortan M, Sagaidac I, Cernetchi O. Assessment of vitamin K levels in women with intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2022; 22:534. [PMID: 35778702 PMCID: PMC9248160 DOI: 10.1186/s12884-022-04875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy is a disorder characterized by pruritus and elevated liver function tests and bile acids. Poor vitamin absorption and, as a result, hypovitaminosis K can occur as a result of the pathology. Given the known effects of vitamin K, the authors considered that hypovitaminosis K could increase the risk of coagulopathic hemorrhage in pregnant women. The study revealed that 59.2% of women with intrahepatic cholestasis of pregnancy were diagnosed with hypovitaminosis K; however, 98.6% of women had normal coagulogram indices. Thus, coagulogram markers are more likely to indicate vitamin K activity than its actual level.
Collapse
Affiliation(s)
- Maria Cemortan
- Department of Obstetrics and Gynecology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.
| | - Irina Sagaidac
- Department of Obstetrics and Gynecology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| | - Olga Cernetchi
- Department of Obstetrics and Gynecology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| |
Collapse
|
7
|
Stępień A, Koziarska-Rościszewska M, Rysz J, Stępień M. Biological Role of Vitamin K-With Particular Emphasis on Cardiovascular and Renal Aspects. Nutrients 2022; 14:262. [PMID: 35057443 PMCID: PMC8780346 DOI: 10.3390/nu14020262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Vitamin K (VK) plays many important functions in the body. The most important of them include the contribution in calcium homeostasis and anticoagulation. Vascular calcification (VC) is one of the most important mechanisms of renal pathology. The most potent inhibitor of this process-matrix Gla protein (MGP) is VK-dependent. Chronic kidney disease (CKD) patients, both non-dialysed and hemodialysed, often have VK deficiency. Elevated uncarboxylated matrix Gla protein (ucMGP) levels indirectly reflected VK deficiency and are associated with a higher risk of cardiovascular events in these patients. It has been suggested that VK intake may reduce the VC and related cardiovascular risk. Vitamin K intake has been suggested to reduce VC and the associated cardiovascular risk. The role and possibility of VK supplementation as well as the impact of anticoagulation therapy on VK deficiency in CKD patients is discussed.
Collapse
Affiliation(s)
- Anna Stępień
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Żeromski St. 113, 90-549 Lodz, Poland; (A.S.); (M.K.-R.); (J.R.)
| | - Małgorzata Koziarska-Rościszewska
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Żeromski St. 113, 90-549 Lodz, Poland; (A.S.); (M.K.-R.); (J.R.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Żeromski St. 113, 90-549 Lodz, Poland; (A.S.); (M.K.-R.); (J.R.)
| | - Mariusz Stępień
- Department of Propaedeutics of Internal Medicine and Social Pharmacology, Medical University of Lodz, Żeromski St. 113, 90-549 Lodz, Poland
| |
Collapse
|
8
|
Zhang Y, Zhang T, Liang Y, Jiang L, Sui X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8929-8943. [PMID: 34161727 DOI: 10.1021/acs.jafc.1c01369] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary lipids are an indispensable source of energy and nutrition in human life. Numerous studies have shown that dietary bioactive lipids have many health benefits, including prevention or treatment of chronic diseases. The different chemical compositions and structural characteristics of bioactive lipids not only affect their digestion, absorption, and metabolism but also affect their health properties. In this review, the major dietary bioactive lipids (fatty acids, carotenoids, phytosterols, phenolic lipids, fat-soluble vitamins, and sphingomyelins) in foods are systematically summarized, from the aspects of composition, digestion, absorption, metabolism, source, structural characteristics, and their health properties. In particular, the relationship between the compositional and structural changes of bioactive lipids and their absorption and metabolism is discussed as well as their effect on health properties. This review provides a comprehensive summary toward health properties of dietary bioactive lipids.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yan Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
9
|
Ziemińska M, Sieklucka B, Pawlak K. Vitamin K and D Supplementation and Bone Health in Chronic Kidney Disease-Apart or Together? Nutrients 2021; 13:809. [PMID: 33804453 PMCID: PMC7999920 DOI: 10.3390/nu13030809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Vitamin K (VK) and vitamin D (VD) deficiency/insufficiency is a common feature of chronic kidney disease (CKD), leading to impaired bone quality and a higher risk of fractures. CKD patients, with disturbances in VK and VD metabolism, do not have sufficient levels of these vitamins for maintaining normal bone formation and mineralization. So far, there has been no consensus on what serum VK and VD levels can be considered sufficient in this particular population. Moreover, there are no clear guidelines how supplementation of these vitamins should be carried out in the course of CKD. Based on the existing results of preclinical studies and clinical evidence, this review intends to discuss the effect of VK and VD on bone remodeling in CKD. Although the mechanisms of action and the effects of these vitamins on bone are distinct, we try to find evidence for synergy between them in relation to bone metabolism, to answer the question of whether combined supplementation of VK and VD will be more beneficial for bone health in the CKD population than administering each of these vitamins separately.
Collapse
Affiliation(s)
- Marta Ziemińska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, 15-222 Bialystok, Poland;
| |
Collapse
|
10
|
Levy DS, Grewal R, Le TH. Vitamin K deficiency: an emerging player in the pathogenesis of vascular calcification and an iatrogenic consequence of therapies in advanced renal disease. Am J Physiol Renal Physiol 2020; 319:F618-F623. [PMID: 32830534 DOI: 10.1152/ajprenal.00278.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vascular calcification is a known complication of chronic kidney disease (CKD). The prevalence of vascular calcification in patients with non-dialysis-dependent CKD stages 3-5 has been shown to be as high as 79% (20). Vascular calcification has been associated with increased risk for mortality, hospital admissions, and cardiovascular disease (6, 20, 50, 55). Alterations in mineral and bone metabolism play a pivotal role in the pathogenesis of vascular calcification in CKD. As CKD progresses, levels of fibroblast growth factor-23, parathyroid hormone, and serum phosphorus increase and levels of 1,25-(OH)2 vitamin D decrease. These imbalances have been linked to the development of vascular calcification. More recently, additional factors have been found to play a role in vascular calcification. Matrix G1a protein (MGP) in its carboxylated form (cMGP) is a potent inhibitor of vascular calcification. Importantly, carboxylation of MGP is dependent on the cofactor vitamin K. In patients with CKD, vitamin K deficiency is prevalent and is exacerbated by warfarin, which is frequently used for anticoagulation. Insufficient bioavailability of vitamin K reduces the amount of cMGP available, and, therefore, it may lead to increased risk of vascular calcification. In vitro studies have shown that in the setting of a high-phosphate environment and vitamin K antagonism, human aortic valve interstitial cells become calcified. In this article, we discuss the pathophysiological consequence of vitamin K deficiency in the setting of altered mineral and bone metabolism, its prevalence, and clinical implications in patients with CKD.
Collapse
Affiliation(s)
- David S Levy
- University of Rochester School of Medicine, Rochester, New York
| | | | - Thu H Le
- University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
11
|
Kratz M, Zelnick LR, Trenchevska O, Jeffs JW, Borges CR, Tseng HH, Booth SL, Kestenbaum BR, Utzschneider KM, de Boer IH. Relationship Between Chronic Kidney Disease, Glucose Homeostasis, and Plasma Osteocalcin Carboxylation and Fragmentation. J Ren Nutr 2020; 31:248-256. [PMID: 32693970 DOI: 10.1053/j.jrn.2020.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/16/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Chronic kidney disease (CKD) is associated with reduced insulin sensitivity, through mechanisms that are not well understood. Low vitamin K intake and incomplete carboxylation of the vitamin K-dependent protein osteocalcin may promote insulin resistance. We assessed relationships of osteocalcin concentration, carboxylation, and fragmentation with CKD and glucose homeostasis in a cross-sectional study. METHODS We included 87 participants without diabetes: 50 (27 female) with moderate to severe CKD (estimated glomerular filtration rate <60 mL/min/1.73 m2 not treated with dialysis) and 37 (17 female) healthy controls. Total osteocalcin was measured by immunoassay, and osteocalcin carboxylation and fragmentation status by liquid chromatography-electrospray ionization-based mass spectrometric immunoassay. Endpoints included glucose tolerance (based on 2-hour oral glucose tolerance test), insulin sensitivity (hyperinsulinemic-euglycemic clamp), and pancreatic beta-cell function (intravenous glucose tolerance test). RESULTS The total plasma osteocalcin concentration was higher in the CKD group (mean [standard deviation] 102.9 [147.5]) than that in the control group (53.6 [51.1] ng/mL, P = .03), and more osteocalcin was circulating as fragments. The extent of osteocalcin carbocylation did not differ between individuals with and without CKD. Osteocalcin concentration, carboxylation, and fragmentation were not associated with any measure of glucose homeostasis in multivariable-adjusted analyses. CONCLUSIONS In CKD, circulating osteocalcin concentrations are elevated, in part due to larger proportions of fragmented forms. However, osteocalcin carboxylation status is not significantly different between individuals with and without CKD. Our data also do not provide support for the hypothesis that differences in osteocalcin carboxylation may explain reduced insulin sensitivity in individuals with CKD.
Collapse
Affiliation(s)
- Mario Kratz
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Public Health Sciences Division, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington; Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington.
| | - Leila R Zelnick
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Olgica Trenchevska
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Joshua W Jeffs
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Chad R Borges
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Hsin-Hui Tseng
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Public Health Sciences Division, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Bryan R Kestenbaum
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Kristina M Utzschneider
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington; VA Puget Sound Healthcare System, Division of Endocrinology, Seattle, Washington
| | - Ian H de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington; VA Puget Sound Healthcare System, Division of Nephrology, Seattle, Washington
| |
Collapse
|
12
|
Simultaneous Determination of Vitamin E and Vitamin K in Food Supplements Using Adsorptive Stripping Square-Wave Voltammetry at Glassy Carbon Electrode. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new voltammetric method for the simultaneous determination of vitamin E and vitamin K present in different types of commercially available food supplements has been developed. This electroanalytical method is based on the ex situ adsorptive accumulation of these biologically active compounds onto the surface of a solid glassy carbon electrode (GCE) with subsequent electrochemical detection by square-wave adsorptive stripping voltammetry in 0.01-mol L−1 HNO3 containing 0.1-mol L−1 KCl at pH 2.08. Due to reversible electrochemical reactions of phylloquinone, a subsequent voltammetric detection of both vitamins in anodic mode can be performed. Since individual forms of vitamins E and K usually exhibit nearly identical electrochemical behavior, it is therefore impossible to distinguish individual forms (quinones and tocopherols) and determine their molar concentrations in this way. Thus, the values of vitamin content were expressed as mass equivalent of phylloquinone and α-tocopherol as they are the most biologically active forms. Despite the high sensitivity, relatively short linear ranges were obtained due to the interaction (competition) of both vitamins during adsorption onto the freshly polished surface of the GCE from a 50% aqueous–acetonitrile mixture. The obtained results showed that the voltammetric approach is a very simple and low-cost analytical method that can be used in analyses of food supplements.
Collapse
|
13
|
Cozzolino M, Cianciolo G, Podestà MA, Ciceri P, Galassi A, Gasperoni L, La Manna G. Current Therapy in CKD Patients Can Affect Vitamin K Status. Nutrients 2020; 12:nu12061609. [PMID: 32486167 PMCID: PMC7352600 DOI: 10.3390/nu12061609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) patients have a higher risk of cardiovascular (CVD) morbidity and mortality compared to the general population. The links between CKD and CVD are not fully elucidated but encompass both traditional and uremic-related risk factors. The term CKD-mineral and bone disorder (CKD-MBD) indicates a systemic disorder characterized by abnormal levels of calcium, phosphate, PTH and FGF-23, along with vitamin D deficiency, decreased bone mineral density or altered bone turnover and vascular calcification. A growing body of evidence shows that CKD patients can be affected by subclinical vitamin K deficiency; this has led to identifying such a condition as a potential therapeutic target given the specific role of Vitamin K in metabolism of several proteins involved in bone and vascular health. In other words, we can hypothesize that vitamin K deficiency is the common pathogenetic link between impaired bone mineralization and vascular calcification. However, some of the most common approaches to CKD, such as (1) low vitamin K intake due to nutritional restrictions, (2) warfarin treatment, (3) VDRA and calcimimetics, and (4) phosphate binders, may instead have the opposite effects on vitamin K metabolism and storage in CKD patients.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.C.); (M.A.P.); (A.G.)
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy; (G.C.); (L.G.)
| | - Manuel Alfredo Podestà
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.C.); (M.A.P.); (A.G.)
| | - Paola Ciceri
- Renal Research Laboratory, Department of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Andrea Galassi
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.C.); (M.A.P.); (A.G.)
| | - Lorenzo Gasperoni
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy; (G.C.); (L.G.)
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy; (G.C.); (L.G.)
- Correspondence: ; Tel.: +39-051214-3255
| |
Collapse
|