1
|
Zungsontiporn N, Ouwongprayoon P, Boonsirikamchai P, Leelayuwatanakul N, Vinayanuwattikun C, Moonai K, Khongkhaduead E, Thorner PS, Shuangshoti S, Teerapakpinyo C. Detection of EGFR T790M mutation using liquid biopsy for non-small cell lung cancer: Utility of droplet digital polymerase chain reaction vs. cobas real-time polymerase chain reaction. Pathol Res Pract 2024; 255:155213. [PMID: 38394807 DOI: 10.1016/j.prp.2024.155213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Digital platforms for mutation detection yield higher sensitivity than non-digital platforms but lack universal positive cut-off values that correlate with the outcome of osimertinib treatment. This study determined compared droplet digital polymerase chain reaction (ddPCR) to the standard cobas assay for epithelial growth factor receptor (EGFR) T790M mutation detection in patients with non-small cell lung cancer. METHODS Study patients had EGFR-mutant tumours with disease progression on first/second generation EGFR tyrosine kinase inhibitors, and osimertinib treatment after T790M mutation detection. T790M status was tested by cobas assay using liquid biopsy, and only by ddPCR if an EGFR mutation was identified but T790M was negative. Clinical efficacy of osimertinib was compared between patients with T790M detected by cobas vs. only by ddPCR. A positive cut-off value for ddPCR was determined by assessing efficacy with osimertinib. RESULTS 61 patients had tumors with an acquired T790M mutation, 38 detected by cobas and an additional 23 only by ddPCR. The median progression-free survival (PFS) for the cobas- and ddPCR-positive groups was 9.5 and 7.8 months, respectively (p=0.43). For ddPCR, a fractional abundance (FA) of 0.1% was used as a cut-off value. The median PFS of patients with FA ≥0.1% and <0.1% was 8.3 and 4.6 months, respectively (p=0.08). FA ≥0.1% was independently associated with a longer PFS. CONCLUSION Using ddPCR to follow up the cobas assay yielded more cases (38% of total) with a T790M mutation. A cut-off value of FA ≥0.1% identified patients who responded as well to osimertinib as those identified by cobas assay. This sequential approach should detect additional patients who might benefit from osimertinib treatment.
Collapse
Affiliation(s)
- Nicha Zungsontiporn
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Pongsakorn Ouwongprayoon
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Piyaporn Boonsirikamchai
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nophol Leelayuwatanakul
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Kantika Moonai
- Chula GenePRO Center, Research Affairs, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Ekkachai Khongkhaduead
- Chula GenePRO Center, Research Affairs, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Paul Scott Thorner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Shanop Shuangshoti
- Chula GenePRO Center, Research Affairs, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Chinachote Teerapakpinyo
- Chula GenePRO Center, Research Affairs, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Ren Y, Cao L, You M, Ji J, Gong Y, Ren H, Xu F, Guo H, Hu J, Li Z. “SMART” digital nucleic acid amplification technologies for lung cancer monitoring from early to advanced stages. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Fan Y, Sun R, Wang Z, Zhang Y, Xiao X, Liu Y, Xin B, Xiong H, Lu D, Ma J. Detection of MET amplification by droplet digital PCR in peripheral blood samples of non-small cell lung cancer. J Cancer Res Clin Oncol 2022; 149:1667-1677. [PMID: 35583827 DOI: 10.1007/s00432-022-04048-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Mesenchymal-epithelial transition (MET) amplification is one of the mechanisms accounting for the resistance of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in lung cancer patients, as well as the poor prognosis. Fluorescence in situ hybridization (FISH) is the most widely used method for MET amplification detection. However, it is inapplicable when tissue samples were unavailable. Herein, we assessed the value of droplet digital PCR (ddPCR) in MET copy number gain (CNG) detection in non-small cell lung cancer (NSCLC) patients treated with EGFR-TKIs. MATERIALS AND METHODS A total of 103 cancer tissues and the paired peripheral blood samples from NSCLC patients were collected for MET CNG detection using ddPCR. In parallel, MET amplification in tissue samples was verified by FISH. Also, the relationships between MET CNG and EGFR T790M, as well as the EGFR-TKI resistance were also evaluated using Chi-square or Fisher's exact tests. RESULT The concordance rate of ddPCR and FISH in detecting MET CNG in tissue samples was 100% (102/102), and it was 94.17% (97/103) for ddPCR method in detecting the MET CNG among peripheral blood and tissue samples. No statistical difference was observed between MET amplification and EGFR T790M (p = 0.65), while MET amplification rate was significantly increased in patients with resistance to third generations of EGFR-TKIs as compared with patients with resistance to first/second EGFR-TKIs (p < 0.05). CONCLUSIONS ddPCR is an alternative method to detect MET CNG in both tissues and peripheral blood samples, which is of worthy in clinical promotion.
Collapse
Affiliation(s)
- Ying Fan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, Shanghai, China.,Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Rui Sun
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, 450003, China
| | - Zhizhong Wang
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, 450003, China
| | - Yuying Zhang
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Xiao Xiao
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Yizhe Liu
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Beibei Xin
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Hui Xiong
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, Shanghai, China. .,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, 400014, China.
| | - Jie Ma
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China. .,Henan Key Laboratory of Molecular Pathology, Zhengzhou, 450003, China.
| |
Collapse
|
4
|
Yi J, Wang N, Wu J, Tang Y, Zhang J, Zhu L, Rui X, Guo Y, Xu Y. Development of a Droplet Digital Polymerase Chain Reaction for Sensitive Detection of Pneumocystis jirovecii in Respiratory Tract Specimens. Front Med (Lausanne) 2021; 8:761788. [PMID: 35004733 PMCID: PMC8727342 DOI: 10.3389/fmed.2021.761788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background:Pneumocystis jirovecii is a human-specific opportunistic fungus that causes Pneumocystis pneumonia (PCP), a life-threatening opportunistic lung infection that affects immunocompromised patients. P. jirovecii colonization may be linked to the transmission of the infection. The detection of P. jirovecii in immunocompromised patients is thus especially important. The low fungal load and the presence of PCR inhibitors limit the usefulness of quantitative PCR (qPCR) for accurate absolute quantification of P. jirovecii in specimens. Droplet digital PCR (ddPCR), however, presents a methodology that allows higher sensitivity and accuracy. Here, we developed a ddPCR method for detecting P. jirovecii DNA in respiratory specimens, and evaluated its sensitivity against qPCR. Materials and Methods: One bronchoalveolar fluid (BALF) sample each was collected from 82 patients with potential PCP to test the presence of P. jirovecii DNA using both ddPCR and qPCR, and samples with inconsistent results between the two methods were further tested by metagenomic next generation sequencing (mNGS). In addition, 37 sputum samples from 16 patients diagnosed with PCP, as well as continuous respiratory tract specimens from nine patients with PCP and treated with sulfonamides, were also collected for P. jirovecii DNA testing using both ddPCR and qPCR. Results: ddPCR and qPCR gave the same results for 95.12% (78/82) of the BALF samples. The remaining four specimens tested positive using ddPCR but negative using qPCR, and they were found to be positive by mNGS. Detection results of 78.37% (29/37) sputum samples were consistent between ddPCR and qPCR, while the other eight samples tested positive using ddPCR but negative using qPCR. The P. jirovecii load of patients with PCP decreased to undetectable levels after treatment according to qPCR, but P. jirovecii was still detectable using ddPCR. Conclusions: ddPCR was more sensitive than qPCR, especially at detecting low-pathogen-load P. jirovecii. Thus, ddPCR represents a useful, viable, and reliable alternative to qPCR in P. jirovecii testing in patients with immunodeficiency.
Collapse
Affiliation(s)
- Jie Yi
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wang
- Human Genetic Resource Center, National Research Institute for Family Planning, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jie Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yueming Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjia Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Xiao Rui
- TargetingOne Corporation, Beijing, China
| | - Yong Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- Yong Guo
| | - Yingchun Xu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yingchun Xu
| |
Collapse
|