1
|
Lu Y, Tian Y, Liu J, Wang Y, Wang X. A De novo Mutation in the COL1A1 Gene Leading to Severe Osteogenesis Imperfecta: Case Report and Review of the Literature. AJP Rep 2024; 14:e215-e223. [PMID: 39268228 PMCID: PMC11392588 DOI: 10.1055/a-2388-3190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/04/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Osteogenesis imperfecta (OI) is the most common monogenic inherited skeletal dysplasia disorder. Mutations in the COL1A1/COL1A2 gene cause ∼85 to 90% of OI. Studies of cases have demonstrated that missense mutations are the primary cause of OI, with poor prognosis. Case Description We report the case of a fetus with skeletal abnormalities and subcutaneous edema. Ultrasound imaging revealed suspected skeletal malformations, including hypoplastic long bones of all four limbs, poorly ossified calvarium, unrevealing nasal bones, and generalized subcutaneous edema. Whole-exome sequencing revealed a heterozygous mutation in COL1A1 (c.2174G > T/p.(G725V), NM_000088.3). According to the American College of Medical Genetics and Genomics guidelines, it was determined to be a pathogenic variant and identified as a de novo variant (PS2 + PP3_strong + PM2_supporting), which has not been reported in the HGMD, gnomAD, ClinVar, or other databases. This variation causes a glycine-to-valine substitution at position 725, located within the Gly-Xaa-Yaa repeat in the helical domain of the collagen molecule. Conclusion The COL1A1 mutation (c.2174G > T/p.(G725V), NM_000088.3) is a novel pathogenic variant of severe OI. Our study expanded the OI COL1A1 gene variation profiles in the Chinese population and provided a theoretical foundation for prenatal diagnosis, genetic counseling, and obstetric management.
Collapse
Affiliation(s)
- Yurong Lu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yijia Tian
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jinxiu Liu
- Testing Center, Yinfeng Medical Laboratory, Jinan, Shandong, People's Republic of China
| | - Yifan Wang
- Testing Center, Yinfeng Medical Laboratory, Jinan, Shandong, People's Republic of China
| | - Xietong Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Qingdao University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
2
|
Azevedo L, Amaro AP, Niza-Ribeiro J, Lopes-Marques M. Naturally occurring genetic diseases caused by de novo variants in domestic animals. Anim Genet 2024; 55:319-327. [PMID: 38323510 DOI: 10.1111/age.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
With the advent of next-generation sequencing, an increasing number of cases of de novo variants in domestic animals have been reported in scientific literature primarily associated with clinically severe phenotypes. The emergence of new variants at each generation is a crucial aspect in understanding the pathology of early-onset diseases in animals and can provide valuable insights into similar diseases in humans. With the aim of collecting deleterious de novo variants in domestic animals, we searched the scientific literature and compiled reports on 42 de novo variants in 31 genes in domestic animals. No clear disease-associated phenotype has been established in humans for three of these genes (NUMB, ANKRD28 and KCNG1). For the remaining 28 genes, a strong similarity between animal and human phenotypes was recognized from available information in OMIM and OMIA, revealing the importance of comparative studies and supporting the use of domestic animals as natural models for human diseases, in line with the One Health approach.
Collapse
Affiliation(s)
- Luísa Azevedo
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Andreia P Amaro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - João Niza-Ribeiro
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Population Studies Department, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- EPIUnit-Epidemiology Research Unit, ISPUP-Institute of Public Health of the University of Porto, Porto, Portugal
| | - Mónica Lopes-Marques
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Hino H, Kondo S, Kuroda J. In vivo imaging of bone collagen dynamics in zebrafish. Bone Rep 2024; 20:101748. [PMID: 38525199 PMCID: PMC10959726 DOI: 10.1016/j.bonr.2024.101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
Type I collagen plays a pivotal role in shaping bone morphology and determining its physical properties by serving as a template for ossification. Nevertheless, the mechanisms underlying bone collagen formation, particularly the principles governing its orientation, remain unknown owing to the lack of a method that enables continuous in vivo observations. To address this challenge, we constructed a method to visualize bone collagen by tagging with green fluorescent protein (GFP) in zebrafish and observed the interactions between osteoblasts and collagen fibers during bone formation in vivo. When collagen type I alpha 2 chain (Col1a2)-GFP was expressed under the control of the osteoblast-specific promoters osx or osc in zebrafish, bone collagen was observed clearly enough to identify its localization, whereas collagen from other organs was not. Therefore, we determined that this method was of sufficient quality for the detailed in vivo observation of bone collagen. Next, bone collagen in the scales, fin rays, and opercular bones of zebrafish was observed in detail, when bone formation is more active. High-magnification imaging showed that Col1a2-GFP can visualize collagen sufficiently to analyze the collagen fiber orientation and microstructure of bones. Furthermore, by simultaneously observation of bone collagen and osteoblasts, we successfully observed dynamic changes in the morphology and position of osteoblasts from the early stages of bone formation. It was also found that the localization pattern and orientation of bone collagen significantly differed depending on the choice of the expression promoter. Both promoters (osx and osc) used in this study are osteoblast-specific, but their Col1a2-GFP localizing regions within the bone were exclusive, with osx region localizing mainly to the outer edge of the bone and osc region localizing to the central area of the bone. This suggests the existence of distinct osteoblast subpopulations with different gene expression profiles, each of which may play a unique role in osteogenesis. These findings would contribute to a better understanding of the mechanisms governing bone collagen formation by osteoblasts.
Collapse
Affiliation(s)
- Hiromu Hino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Junpei Kuroda
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Lu X, He Y, Liu Y, Wang XP, Xue YL, Zheng ZY, Duan SY, Kong HL, Zhang RZ, Huang JL, Deng J, Duan P. Intergenerational toxic effects of parental exposure to [C n mim]NO 3 (n = 2,4,6) on nervous and skeletal development in zebrafish offspring. ENVIRONMENTAL TOXICOLOGY 2023; 38:2204-2218. [PMID: 37300850 DOI: 10.1002/tox.23858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/21/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs) are thought to have negative effects on human health. Researchers have explored the effects of ILs on zebrafish development during the early stages, but the intergenerational toxicity of ILs on zebrafish development has rarely been reported. Herein, parental zebrafish were exposed to different concentrations (0, 12.5, 25, and 50 mg/L) of [Cn mim]NO3 (n = 2, 4, 6) for 1 week. Subsequently, the F1 offspring were cultured in clean water for 96 h. [Cn mim]NO3 (n = 2, 4, 6) exposure inhibited spermatogenesis and oogenesis in F0 adults, even causing obvious lacunae in the testis and atretic follicle oocytes in ovary. After parental exposure to [Cn mim]NO3 (n = 2, 4, 6), the body length and locomotor behavior were measured in F1 larvae at 96 hours post-fertilization (hpf). The results showed that the higher the concentration of [Cn mim]NO3 (n = 2, 4, 6), the shorter the body length and swimming distance, and the longer the immobility time. Besides, a longer alkyl chain length of [Cn mim]NO3 had a more negative effect on body length and locomotor behavior. RNA-seq analysis revealed several downregulated differentially expressed genes (DEGs)-grin1b, prss1, gria3a, and gria4a-enriched in neurodevelopment-related pathways, particularly the pathway for neuroactive ligand-receptor interaction. Moreover, several upregulated DEGs, namely col1a1a, col1a1b, and acta2, were mainly associated with skeletal development. Expression of DEGs was tested by RT-qPCR, and the outcomes were consistent with those obtained from RNA-Seq. We provide evidence showing the effects of parental exposure to ILs on the regulation of nervous and skeletal development in F1 offspring, demonstrating intergenerational effects.
Collapse
Affiliation(s)
- Xin Lu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan He
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yue Liu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xin-Ping Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yu-Ling Xue
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zi-Yi Zheng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Su-Yang Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hong-Liang Kong
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Rong-Zhi Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiao-Long Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jie Deng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Pharmacy, Hubei University of Medicine, China
| |
Collapse
|
5
|
Liu W, Pan Y, Yang L, Xie Y, Chen X, Chang J, Hao W, Zhu L, Wan B. Developmental toxicity of TCBPA on the nervous and cardiovascular systems of zebrafish (Danio rerio): A combination of transcriptomic and metabolomics. J Environ Sci (China) 2023; 127:197-209. [PMID: 36522053 DOI: 10.1016/j.jes.2022.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 06/17/2023]
Abstract
Tetrachlorobisphenol A (TCBPA), a widely used halogenated flame retardant, is frequently detected in environmental compartments and human samples. However, unknown developmental toxicity and mechanisms limit the entire understanding of its effects. In this study, zebrafish (Danio rerio) embryos were exposed to various concentrations of TCBPA while a combination of transcriptomics, behavioral and biochemical analyzes as well as metabolomics were applied to decipher its toxic effects and the potential mechanisms. We found that TCBPA could interfere with nervous and cardiovascular development through focal adhesion and extracellular matrix-receptor (ECM-receptor) interaction pathways through transcriptomic analysis. Behavioral and biochemical analysis results indicated abnormal swimming behavior of zebrafish larvae. Morphological observations revealed that TCBPA could cause the loss of head blood vessels. Metabolomic analysis showed that arginine-related metabolic pathways were one of the main pathways leading to TCBPA developmental toxicity. Our study demonstrated that by using omics, TCBPA was shown to have neurological and cardiovascular developmental toxicity and the underlying mechanisms were uncovered and major pathways identified.
Collapse
Affiliation(s)
- Wentao Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Yang
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xuanyue Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifei Zhu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|