1
|
Ma Y, Wang D, Li H, Ma X, Zou Y, Mu D, Yu S, Cheng X, Qiu L. Liquid chromatography-tandem mass spectrometry in clinical laboratory protein measurement. Clin Chim Acta 2024; 562:119846. [PMID: 38969085 DOI: 10.1016/j.cca.2024.119846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Proteins are essential components of human cells and tissues, and they are commonly measured in clinical laboratories using immunoassays. However, these assays have certain limitations, such as non-specificity binding, insufficient selectivity, and interference of antibodies. More sensitive, accurate, and efficient technology is required to overcome these limitations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful analytical tool that provides high sensitivity and specificity, making it superior to traditional methods such as biochemical methods and immunoassays. While LC-MS/MS has been increasingly used for detecting small molecular analytes and steroid hormones in clinical practice recently, its application for protein or peptide analysis is still in its early stages. Established methods for quantifying proteins and peptides by LC-MS/MS are mainly focused on scientific research, and only a few proteins and peptides can be or have the potential to be detected and applied in clinical practice. Therefore, this article aims to review the clinical applications, advantages, and challenges of analyzing proteins and peptides using LC-MS/MS in clinical laboratories.
Collapse
Affiliation(s)
- Yichen Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Honglei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China.
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
2
|
Nascimento ALA, Guimarães AS, Rocha TDS, Goulart MOF, Xavier JDA, Santos JCC. Structural changes in hemoglobin and glycation. VITAMINS AND HORMONES 2024; 125:183-229. [PMID: 38997164 DOI: 10.1016/bs.vh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Amanda Luise Alves Nascimento
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ari Souza Guimarães
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Tauane Dos Santos Rocha
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | | | - Jadriane de Almeida Xavier
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil.
| | | |
Collapse
|
3
|
Ito M, Sugawara K. Construction of Biosensing System for Glycated Albumin Using an Electron Transfer Peptide-Modified Protein Probe. Chem Pharm Bull (Tokyo) 2024; 72:258-265. [PMID: 38432907 DOI: 10.1248/cpb.c23-00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Glycated albumin (GA) is one of the proteins that replaces several sugar moieties and can be used as an indicator of diabetes mellitus. We developed a sensing system that uses GA in the early detection of diabetes mellitus. In this study, H6Y4C acetylated (Ac-) at the N-terminals of the peptide was combined with wheat germ agglutinin (WGA) to recognize glucose moieties. The Ac-H6Y4C-WGA was constructed as a GA-sensing probe. The tyrosine residues of Y4C exhibited an oxidation peak, and His-tag moieties were introduced to separate Ac-H6Y4C-WGA in the synthesis of the probe. The Ac-H6Y4C-WGA probe binds with the 1-2 molecules of Ac-H6Y4C per WGA using matrix assisted laser desorption/ionization-time of flight (MALDI-TOF)-MS. Next, the functions of Ac-H6Y4C-WGA were evaluated using voltammetry. The number of electron-transfers was calculated based on the relationship between the peak potential and logarithm of scan rate and was 3.03. In the electrochemical measurements with mannose and bovine serum albumin, the peak currents were similar to that of GA alone. By contrast, a decrease in the peak current was suppressed when glucose was added to the solution containing the probe. As a result, Ac-H6Y4C-WGA was selectively bound to the glucose moieties of GA. The calibration curve via differential pulse voltammetry was proportional to the concentrations of GA and ranged from 1.0 × 10-12 to 2.0 × 10-11 M with a detection limit of 3.3 × 10-13 M.
Collapse
Affiliation(s)
- Michiru Ito
- Division of Biotechnology, Graduate School of Engineering, Maebashi Institute of Technology
| | - Kazuharu Sugawara
- Department of Life Engineering, Faculty of Engineering, Maebashi Institute of Technology
| |
Collapse
|
4
|
Shin A, Connolly S, Kabytaev K. Protein glycation in diabetes mellitus. Adv Clin Chem 2023; 113:101-156. [PMID: 36858645 DOI: 10.1016/bs.acc.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
5
|
Yang S, Tian X, Chen Y, Shen L, Wang J. Isotope-dilution liquid chromatography-tandem mass spectrometry method for serum beta 2-microglobulin quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1211:123487. [DOI: 10.1016/j.jchromb.2022.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
6
|
Yan J, Wang M, Yang M, Zhou J, Xue X, Wang T. Study of SI-traceable purity assessment of bovine lactoferrin using mass balance approach and amino acid-based isotope dilution liquid chromatography-mass spectrometry. Food Chem 2022; 385:132674. [PMID: 35290950 DOI: 10.1016/j.foodchem.2022.132674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
Abstract
The accurate measurement of bovine lactoferrin (bLF) attracts wide attention in food and nutraceutical applications as its important physiological and nutritional functions. We present SI traceable procedures for assessing bLF purity using mass balance method and amino acid (AA)-based isotope dilution mass spectrometry (IDMS). The mass balance method was revealed with a purity of 0.938 ± 0.011 g/g by deducting all aspects of impurities, including related structure impurities of 4.60%, ignition residue of 0.28%, Cl- of 1.10%, SO42- of 0.13%, and moisture of 0.17%. The AA-based IDMS quantitative result was 0.937 ± 0.027 g/g. Hydrolysis conditions were optimized and methodology validation including, accuracy, precision, were studied. Good consistency was achieved between the two independent strategies and bLF purity assigned via the weighted mean value of their results was 0.938 ± 0.015 g/g. These analyses are expected to be applicable to proteins quantification and development of LF certified reference materials.
Collapse
Affiliation(s)
- Jingjing Yan
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Min Wang
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Mengrui Yang
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Jian Zhou
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tongtong Wang
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| |
Collapse
|
7
|
Feng S, Zhang A, Wu F, Luo X, Zhang J. Boronic acid grafted metal-organic framework for selective enrichment of cis-diol-containing compounds. J Chromatogr A 2022; 1677:463281. [DOI: 10.1016/j.chroma.2022.463281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
|
8
|
Comprehensive profiling and kinetic studies of glycated lysine residues in human serum albumin. Anal Bioanal Chem 2022; 414:4861-4875. [PMID: 35538229 DOI: 10.1007/s00216-022-04108-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/09/2023]
Abstract
Lysine residues of proteins slowly react with glucose forming Amadori products. In hyperglycemic conditions, such as diabetes mellitus, this non-enzymatic glycation becomes more pervasive causing severe medical complications. The structure and conformation of a protein predisposes lysine sites to differing reactivity influenced by their steric availability and amino acid microenvironment. The goal of our study was to identify these sites in albumin and measure glycation affinities of lysine residues. We applied a bottom-up approach utilizing a combination of three LC-MS instruments: timsTOF, Orbitrap, and QTRAP. To prove applicability to samples of varying glycemic status, we compared in vitro glycated and non-glycated HSA, as well as diabetic and non-diabetic individual samples. The analysis of lysine glycation affinities based on peptide intensities provide a semi-quantitative approach, as the results depend on the mass spectrometry platform used. We found that glycation levels based on multiple reaction monitoring (MRM) quantitation better reflect individual glycemic status and that the glycation percentage for each site is in linear relation to all other sites. To develop an approach which more accurately reflects glycation affinity, we developed a kinetics model which uses results from stable isotope dilution HPLC-MRM methodology. Through glycation of albumin at different glucose concentrations, we determine the rate constants of glycation for every lysine residue by simultaneous comparative analysis.
Collapse
|