1
|
Chu LX, Wang WJ, Gu XP, Wu P, Gao C, Zhang Q, Wu J, Jiang DW, Huang JQ, Ying XW, Shen JM, Jiang Y, Luo LH, Xu JP, Ying YB, Chen HM, Fang A, Feng ZY, An SH, Li XK, Wang ZG. Spatiotemporal multi-omics: exploring molecular landscapes in aging and regenerative medicine. Mil Med Res 2024; 11:31. [PMID: 38797843 PMCID: PMC11129507 DOI: 10.1186/s40779-024-00537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Aging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration. However, these methods are somewhat limited, constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations. The advent of emerging spatiotemporal multi-omics approaches, encompassing transcriptomics, proteomics, metabolomics, and epigenomics, furnishes comprehensive insights into these intricate molecular dynamics. These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells, tissues, and organs, thereby offering an in-depth understanding of the fundamental mechanisms at play. This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research. It underscores how these methodologies augment our comprehension of molecular dynamics, cellular interactions, and signaling pathways. Initially, the review delineates the foundational principles underpinning these methods, followed by an evaluation of their recent applications within the field. The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field. Indubitably, spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration, thus charting a course toward potential therapeutic innovations.
Collapse
Affiliation(s)
- Liu-Xi Chu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wen-Jia Wang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xin-Pei Gu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Jia Wu
- Key Laboratory for Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Da-Wei Jiang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jun-Qing Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Xin-Wang Ying
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jia-Men Shen
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Jiang
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li-Hua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 324025, Zhejiang, China
| | - Jun-Peng Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi-Bo Ying
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hao-Man Chen
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ao Fang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zun-Yong Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.
| | - Shu-Hong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Xiao-Kun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Zhou-Guang Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
2
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
3
|
Huertas-Lárez R, Muñoz-Moreno L, Recio-Aldavero J, Román ID, Arenas MI, Blasco A, Sanchís-Bonet Á, Bajo AM. Induction of more aggressive tumoral phenotypes in LNCaP and PC3 cells by serum exosomes from prostate cancer patients. Int J Cancer 2023; 153:1829-1841. [PMID: 37526104 DOI: 10.1002/ijc.34673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Prostate cancer (PCa) is the second most frequent and sixth most fatal cancer in men worldwide. Despite its high prevalence, our understanding of its etiology and the molecular mechanisms involved in the progression of the disease is substantially limited. In recent years, the potential participation of exosomes in this process has been suggested. Therefore, we aim to study the effect of exosomes isolated from the serum of patients with PCa on various cellular processes associated with increased tumor aggressiveness in two PCa cell lines: LNCaP-FGC and PC3. The exosomes were isolated by filtration wand ultracentrifugation. Their presence was confirmed by immunodetection of specific markers and their size distribution was analyzed by Dynamic Light Scattering (DLS). The results obtained demonstrated that serum exosomes from PCa patients increased migration of PC3 cells and neuroendocrine differentiation of LNCaP-FGC cells regardless of the grade of the tumor. PCa serum exosomes also enhanced the secretion of enzymes related to invasiveness and resistance to chemotherapeutics, such as extracellular matrix metalloproteases 2 and 9, and gamma-glutamyltransferase in both cell lines. Altogether, these findings support the pivotal participation of exosomes released by tumoral cells in the progression of PCa. Future studies on the molecular mechanisms involved in the observed changes could provide crucial information on this disease and help in the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Raquel Huertas-Lárez
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - Laura Muñoz-Moreno
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - Jorge Recio-Aldavero
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - Irene Dolores Román
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - María Isabel Arenas
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Biología Celular, Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - Ana Blasco
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Servicio de Anatomía Patológica, Hospital Universitario Príncipe de Asturias, Carretera de Alcalá Meco s/n, Alcalá de Henares, Madrid, Spain
| | - Ángeles Sanchís-Bonet
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Servicio de Urología, Hospital Universitario Príncipe de Asturias, Carretera de Alcalá Meco s/n, Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
7
|
Chu L, Liu S, Wu Y, Yang J, Qiao S, Zhou Y, Deng H, Li X, Shen Z. Hair levels of steroid, endocannabinoid, and the ratio biomarkers predict viral suppression among people living with HIV/AIDS in China. Clin Chim Acta 2022; 535:143-152. [PMID: 36041548 DOI: 10.1016/j.cca.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Predicting viral suppression early is crucial to improving treatment outcomes among people living with HIV/AIDS (PLWH) in clinics. Viral suppression is affected by stress, making stress indicators a potential predictive factor. Most of previous studies used the self-report questionnaire as stress indicators, but there were great drawbacks due to its subjective. In contrast, end products of neuroendocrine systems such as hypothalamic-pituitaryadrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes and endogenous cannabinoid system (ECS) that involved in regulating stress as objective stress indicators are urgently needed to predict viral suppression. Therefore, this study aimed to investigate whether neuroendocrine indictors can strongly predict viral suppression among PLWH in China. METHODS This cross-sectional study recruited 1198 PLWH on antiretroviral therapy (ART) in Guangxi, China. The concentrations of steroids (i.e., cortisol, cortisone, dehydroepiandrosterone, testosterone and progesterone) and endocannabinoids (i.e., N-arachidonoyl-ethanolamine and 1-arachidonyl glycerol) in hair were quantitated using the LC-APCI+-MS/MS method. To screen biomarkers that were used to predict viral suppression, association between hair biomarkers and viral suppression was examined by Mann-Whitney U test and partial correlation analyses. Receiver operating characteristic (ROC) curves and binary logistic regression based on the optimal classification threshold determined with ROC curves were used to estimate the prediction effects of the screened biomarkers on viral suppression (HIV-1 RNA < 200 copies/mL). RESULTS Hair levels of dehydroepiandrosterone (DHEA), and N-arachidonoyl-ethanolamine (AEA), and the cortisol to DHEA ratio exhibited significant intergroup differences (ps < 0.05) and were correlated with HIV viral load (ps < 0.05). Hair DHEA concentrations strongly predicted viral suppression, showing good classification performance (area under the ROC curve = 0.651, p < 0.01) and strong predictive utility (adjusted odd ratio = 2.324, 95 % confidence interval = 1.211-4.899, p < 0.05) with an optimal threshold of 10.5 pg/mg. A hair AEA concentration of 2.4 pg/mg was the optimal threshold for predicting viral suppression based on good classification performance (area under the ROC curve = 0.598, p < 0.05) and predictive power (adjusted odd ratio = 2.124, 95 % confidence interval = 1.045-4.244, p < 0.05). In hair levels of cortisol to DHEA, viral suppression was observed to be highly predictive, with a threshold of 10.5 pg/mg being optimal for classification (area under the ROC curve = 0.624, p < 0.05) and prediction (adjusted odd ratio = 0.421, 95 % confidence interval = 0.201-0.785, p < 0.05). CONCLUSION Hair levels of DHEA, and AEA and the cortisol to DHEA ratio were screened and verified to have significant predictive power with optimal thresholds for predicting viral suppression in a large-scale cohort. The data may provide new insights into predictors of successful virological outcomes and inform public health intervention and clinical practice to assist PLWH in achieving and sustaining viral suppression.
Collapse
Affiliation(s)
- Liuxi Chu
- Department of Brain and Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Shuaifeng Liu
- Guangxi Center for Disease Control and Prevention, Nanning 530028, China
| | - Yan Wu
- Department of Brain and Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Jin Yang
- Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China; School of Public Health, Southeast University, Nanjing 210009, China
| | - Shan Qiao
- Department of Health Promotion, Education and Behavior, South Carolina SmartState Center for Healthcare Quality (CHQ), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Yuejiao Zhou
- Guangxi Center for Disease Control and Prevention, Nanning 530028, China
| | - Huihua Deng
- Department of Brain and Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China.
| | - Xiaoming Li
- Department of Health Promotion, Education and Behavior, South Carolina SmartState Center for Healthcare Quality (CHQ), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| | - Zhiyong Shen
- Guangxi Center for Disease Control and Prevention, Nanning 530028, China.
| |
Collapse
|