1
|
Kiełbowski K, Żychowska J, Bakinowska E, Pawlik A. Non-Coding RNA Involved in the Pathogenesis of Atherosclerosis-A Narrative Review. Diagnostics (Basel) 2024; 14:1981. [PMID: 39272765 PMCID: PMC11394555 DOI: 10.3390/diagnostics14171981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Atherosclerosis is a highly prevalent condition associated with lipid accumulation in the intima layer of arterial blood vessels. The development of atherosclerotic plaques is associated with the incidence of major cardiovascular events, such as acute coronary syndrome or ischemic stroke. Due to the significant prevalence of atherosclerosis and its subclinical progression, it is associated with severe and potentially lethal complications. The pathogenesis of atherosclerosis is complex and not entirely known. The identification of novel non-invasive diagnostic markers and treatment methods that could suppress the progression of this condition is highly required. Non-coding RNA (ncRNA) involves several subclasses of RNA molecules. microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) differently regulate gene expression. Importantly, these molecules are frequently dysregulated under pathological conditions, which is associated with enhanced or suppressed expression of their target genes. In this review, we aim to discuss the involvement of ncRNA in crucial mechanisms implicated in the pathogenesis of atherosclerosis. We summarize current evidence on the potential use of these molecules as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Xu K, Huang RQ, Wen RM, Yao TT, Cao Y, Chang B, Cheng Y, Yi XJ. Annexin A family: A new perspective on the regulation of bone metabolism. Biomed Pharmacother 2024; 178:117271. [PMID: 39121589 DOI: 10.1016/j.biopha.2024.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoblast-mediated bone formation and osteoclast-mediated bone resorption are critical processes in bone metabolism. Annexin A, a calcium-phospholipid binding protein, regulates the proliferation and differentiation of bone cells, including bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts, and has gradually become a marker gene for the diagnosis of osteoporosis. As calcium channel proteins, the annexin A family members are closely associated with mechanical stress, which can target annexins A1, A5, and A6 to promote bone cell differentiation. Despite the significant clinical potential of annexin A family members in bone metabolism, few studies have reported on these mechanisms. Therefore, based on a review of relevant literature, this article elaborates on the specific functions and possible mechanisms of annexin A family members in bone metabolism to provide new ideas for their application in the prevention and treatment of bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Rui-Qi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Rui-Ming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Ting-Ting Yao
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Yang Cao
- Graduate School, Anhui University of Traditional Chinese Medicine, Heifei, Anhui 230012, China.
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| | - Xue-Jie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning 110102, China.
| |
Collapse
|
3
|
Shu X, Xu R, Xiong P, Liu J, Zhou Z, Shen T, Zhang X. Exploring the Effects and Potential Mechanisms of Hesperidin for the Treatment of CPT-11-Induced Diarrhea: Network Pharmacology, Molecular Docking, and Experimental Validation. Int J Mol Sci 2024; 25:9309. [PMID: 39273257 PMCID: PMC11394706 DOI: 10.3390/ijms25179309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Chemotherapy-induced diarrhea (CID) is a potentially serious side effect that often occurs during anticancer therapy and is caused by the toxic effects of chemotherapeutic drugs on the gastrointestinal tract, resulting in increased frequency of bowel movements and fluid contents. Among these agents, irinotecan (CPT-11) is most commonly associated with CID. Hesperidin (HPD), a flavonoid glycoside found predominantly in citrus fruits, has anti-oxidation properties and anti-inflammation properties that may benefit CID management. Nevertheless, its potential mechanism is still uncertain. In this study, we firstly evaluated the pharmacodynamics of HPD for the treatment of CID in a mouse model, then used network pharmacology and molecular docking methods to excavate the mechanism of HPD in relieving CID, and finally further proved the predicted mechanism through molecular biology experiments. The results demonstrate that HPD significantly alleviated diarrhea, weight loss, colonic pathological damage, oxidative stress, and inflammation in CID mice. In addition, 74 potential targets for HPD intervention in CID were verified by network pharmacology, with the top 10 key targets being AKT1, CASP3, ALB, EGFR, HSP90AA1, MMP9, ESR1, ANXA5, PPARG, and IGF1. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the PI3K-Akt pathway, FoxO pathway, MAPK pathway, TNF pathway, and Ras pathway were most relevant to the HPD potential treatment of CID genes. The molecular docking results showed that HPD had good binding to seven apoptosis-related targets, including AKT1, ANXA5, CASP3, HSP90AA1, IGF1, MMP9, and PPARG. Moreover, we verified apoptosis by TdT-mediated dUTP nick-end labeling (TUNEL) staining and immunohistochemistry, and the hypothesis about the proteins above was further verified by Western blotting in vivo experiments. Overall, this study elucidates the potential and underlying mechanisms of HPD in alleviating CID.
Collapse
Affiliation(s)
- Xinyao Shu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruitong Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peiyu Xiong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junyu Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zubing Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
4
|
Sheng Y, Ding H, Zhou J, Wu Y, Xu K, Yang F, Du Y. The effect of TFAP2A/ANXA8 axis on ferroptosis of cervical squamous cell carcinoma (CESC) in vitro. Cytotechnology 2024; 76:403-414. [PMID: 38933875 PMCID: PMC11196569 DOI: 10.1007/s10616-024-00619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 06/28/2024] Open
Abstract
Potential role and associated mechanisms of Annexin A8 (ANXA8), a member of the Annexins family, in cervical squamous cell carcinoma (CESC) are still unclear, despite being upregulated in various malignant tumors. Here, we observed a notably elevated expression of ANXA8 in CESC cells. The inhibition of ANXA8 amplified the susceptibility of CESC cells to Erastin and sorafenib-induced ferroptosis, whereas it exerted minimal influence on DPI7 and DPI10-induced ferroptosis. The results from the Fe2+ concentration assay showed no significant correlation between ANXA8 gene knockdown and intracellular Fe2+ concentration induced by ferroptosis inducers. Western blot analysis demonstrated that the knockdown of ANXA8 did not alter ACSL4 and LPCAT levels under ferroptosis-inducing conditions, but it did result in a reduction in intracellular GSH levels induced by the ferroptosis inducer. Subsequently, we identified TFAP2A as an upstream transcription factor of ANXA8, which plays a role in regulating cell ferroptosis. The knockdown of TFAP2A significantly elevated MDA levels and depressed GSH levels in the presence of a ferroptosis inducer, thereby inhibiting cell ferroptosis. However, this inhibitory effect could be reversed by ANXA8 overexpression. Therefore, our research suggests that the TFAP2A/ANXA8 axis exerts regulatory control over ferroptosis in CESC cells by mediating GSH synthesis in System Xc.
Collapse
Affiliation(s)
- Yuehua Sheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang People’s Republic of China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang People’s Republic of China
| | - Jiaqing Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang People’s Republic of China
| | - Yuejing Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang People’s Republic of China
| | - Kejun Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang People’s Republic of China
| | - Fan Yang
- Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang People’s Republic of China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang People’s Republic of China
| | - Yongming Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang People’s Republic of China
| |
Collapse
|
5
|
Xu L, Wang L, Gan Y, Lin J, Ning S, Deng J, Ning Y, Feng W. Interference with ANXA8 inhibits the malignant progression of ovarian cancer by suppressing the activation of the Wnt/β-catenin signaling pathway via UCHL5. Aging (Albany NY) 2024; 16:11275-11288. [PMID: 39068672 PMCID: PMC11315385 DOI: 10.18632/aging.205991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/30/2024] [Indexed: 07/30/2024]
Abstract
Ovarian cancer (OC), which threatens women's lives, is a common tumor of the female reproductive system. Annexin A8 (ANXA8) is highly expressed in OC. However, the mechanism of ANXA8 in OC remains unclear. This study investigated the potential mechanisms of ANXA8 in OC. The expression of ANXA8 in OC cells was determined by qRT-PCR and western blotting. ANXA8 interference plasmid was constructed. Moreover, CCK-8, EDU staining, TUNEL staining, western blotting, wound healing, and transwell assays were used to detect cell proliferation, apoptosis, migration, and invasion, respectively. Next, the relationship between ANXA8 and ubiquitin C-terminal hydrolase L5 (UCHL5) was verified through Co-IP. Finally, western blotting was used to detect the expression of Wnt/β-catenin signaling-related proteins. Additionally, we further interfered ANXA8 in nude mice with OC, and detected the expression of ANXA8, UCHL5 and the signaling pathway-related proteins by immunohistochemistry and western blotting. Our results suggested that ANXA8 expression was significantly increased in OC cells. ANXA8 interference significantly attenuated the proliferative, invasive, and migratory capabilities and promoted the apoptotic ability of OC cells. Moreover, the expression of UCHL5 in OC was significantly increased. ANXA8 bound to UCHL5 in OC cells. Knockdown of ANXA8 attenuated OC cell malignant progression by downregulating the expression of UCHL5. Furthermore, ANXA8 affected the expression of Wnt/β-catenin signaling pathway-related proteins in OC cells via UCHL5. Collectively, ANXA8 interference suppressed the activation of Wnt/β-catenin signaling pathway via UCHL5 to inhibit cell proliferation, invasion, migration and induce cell apoptosis in OC, thus presenting a potential therapeutic strategy for OC treatment.
Collapse
Affiliation(s)
- Li Xu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Liang Wang
- Guangdong Guojian Pharmaceutical Consulting Co., Ltd., Guangzhou 510030, China
| | - Yaping Gan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Jiazhi Lin
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Shuting Ning
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Jinjin Deng
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Yingxia Ning
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Weifeng Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
6
|
Shu LX, Cao LL, Guo X, Wang ZB, Wang SZ. Mechanism of efferocytosis in atherosclerosis. J Mol Med (Berl) 2024; 102:831-840. [PMID: 38727748 DOI: 10.1007/s00109-024-02439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 06/29/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease that occurs in the intima of large and medium-sized arteries with the immune system's involvement. It is a common pathological basis for high morbidity and mortality of cardiovascular diseases. Abnormal proliferation of apoptotic cells and necrotic cells leads to AS plaque expansion, necrotic core formation, and rupture. In the early stage of AS, macrophages exert an efferocytosis effect to engulf and degrade apoptotic, dead, damaged, or senescent cells by efferocytosis, thus enabling the regulation of the organism. In the early stage of AS, macrophages rely on this effect to slow down the process of AS. However, in the advanced stage of AS, the efferocytosis of macrophages within the plaque is impaired, which leads to the inability of macrophages to promptly remove the apoptotic cells (ACs) from the organism promptly, causing exacerbation of AS. Moreover, upregulation of CD47 expression in AS plaques also protects ACs from phagocytosis by macrophages, resulting in a large amount of residual ACs in the plaque, further expanding the necrotic core. In this review, we discussed the molecular mechanisms involved in the process of efferocytosis and how efferocytosis is impaired and regulated during AS, hoping to provide new insights for treating AS.
Collapse
Affiliation(s)
- Li-Xia Shu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Liu-Li Cao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Xin Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Li L, Wang B, Zhao S, Xiong Q, Cheng A. The role of ANXA1 in the tumor microenvironment. Int Immunopharmacol 2024; 131:111854. [PMID: 38479155 DOI: 10.1016/j.intimp.2024.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Annexin A1 (ANXA1) is widely expressed in a variety of body tissues and cells and is also involved in tumor development through multiple pathways. The invasion, metastasis, and immune escape of tumor cells depend on the interaction between tumor cells and their surrounding environment. Research shows that ANXA1 can act on a variety of cells in the tumor microenvironment (TME), and subsequently affect the proliferation, invasion and metastasis of tumors. This article describes the role of ANXA1 in the various components of the tumor microenvironment and its mechanism of action, as well as the existing clinical treatment measures related to ANXA1. These findings provide insight for the further design of strategies targeting ANXA1 for the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lanxin Li
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuang Zhao
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Qinglin Xiong
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
8
|
Hu J, Chen L, Ruan J, Chen X. The role of the annexin A protein family at the maternal-fetal interface. Front Endocrinol (Lausanne) 2024; 15:1314214. [PMID: 38495790 PMCID: PMC10940358 DOI: 10.3389/fendo.2024.1314214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Successful pregnancy requires the tolerance of the maternal immune system for the semi-allogeneic embryo, as well as a synchrony between the receptive endometrium and the competent embryo. The annexin family belongs to calcium-regulated phospholipid-binding protein, which functions as a membrane skeleton to stabilize the lipid bilayer and participate in various biological processes in humans. There is an abundance of the annexin family at the maternal-fetal interface, and it exerts a crucial role in embryo implantation and the subsequent development of the placenta. Altered expression of the annexin family and dysfunction of annexin proteins or polymorphisms of the ANXA gene are involved in a range of pregnancy complications. In this review, we summarize the current knowledge of the annexin A protein family at the maternal-fetal interface and its association with female reproductive disorders, suggesting the use of ANXA as the potential therapeutic target in the clinical diagnosis and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Jingwen Hu
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Lin Chen
- Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing Ruan
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
- Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Qu Y, Chen L, Ren X, Shari A, Yuan Y, Yu M, Xiao H, Li G. Milk proteomic analysis reveals differentially expressed proteins in high-yielding and low-yielding Guanzhong dairy goats at peak lactation. J DAIRY RES 2024; 91:31-37. [PMID: 38415394 DOI: 10.1017/s0022029924000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The aim of this experiment was to investigate the differential proteomic characteristics of milk from high- and low-yielding Guanzhong dairy goats during the peak lactation period under the same feeding conditions. Nine Guanzhong dairy goats with high yield (H: 3.5 ± 0.17 kg/d) and nine with low yield (L:1.2 ± 0.25 kg/d) were selected for milk proteomic analysis using tandem mass tag technology. A total of 78 differentially expressed proteins were identified. Compared with L, 50 proteins including HK3, HSPB1 and ANXA2 were significantly upregulated in H milk, while 28 proteins including LALBA and XDH were significantly downregulated. Bioinformatics analysis of the differentially expressed proteins showed that galactose metabolism, purine metabolism, glycolysis/gluconeogenesis, MAPK signaling pathway, regulation of actin cytoskeleton and other pathways were closely related to milk yield. HK3, HSPB1, ANXA2, LALBA and XDH were important candidate proteins associated with the milk production characteristics of Guanzhong dairy goats. Our data provide relevant biomarkers and a theoretical basis for improving milk production in Guanzhong dairy goats.
Collapse
Affiliation(s)
- Yingxin Qu
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lu Chen
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xinyang Ren
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Akang Shari
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxin Yuan
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Mengqi Yu
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Haoqi Xiao
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Guang Li
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
10
|
Xue Y, Hu Y, Yu S, Zhu W, Liu L, Luo M, Luo S, Shen J, Huang L, Liu J, Lv D, Zhang W, Wang J, Li X. The lncRNA GAS5 upregulates ANXA2 to mediate the macrophage inflammatory response during atherosclerosis development. Heliyon 2024; 10:e24103. [PMID: 38293536 PMCID: PMC10825448 DOI: 10.1016/j.heliyon.2024.e24103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Inflammatory macrophages play a crucial role in atherosclerosis development. The long non-coding RNA growth arrest-specific 5 (GAS5) regulates THP-1 macrophage inflammation by sponging microRNAs. The purpose of this study was to investigate the regulatory mechanism of GAS5 in atherosclerosis development. GSE40231, GSE21545, and GSE28829 datasets from the Gene Expression Omnibus database were integrated after adjusting for batch effect. Differential analysis was performed on the integrated dataset and validated using the Genotype-Tissue Expression and GSE57691 datasets. Potential biological functions of GAS5 and annexin A2 (ANXA2) were identified using gene set enrichment analysis (GSEA). ssGSEA, CIBERSORTx, and ImmuCellAI algorithms were used to identify immune infiltration in plaque samples. GAS5 and ANXA2 expression levels in RAW264.7 cells treated with oxidized low-density lipoprotein (ox-LDL) were measured by qRT-PCR and Western blot. Small interfering and short hairpin RNA were used to silence GAS5 expression. Plasmids of ANXA2 were used to establish ANXA2 overexpression. Apoptosis and inflammatory markers in macrophages were detected by Western blot. Aortic samples from APOE-/- mice were collected to validate the expression of GAS5 and ANXA2. GAS5 expression was significantly increased during atherosclerosis. GAS5 expression was positively correlated with macrophage activation and ANXA2 expression in plaques. Furthermore, ANXA2 upregulation was also related to the activation of macrophage. GSEA indicated similar biological functions for GAS5 and ANXA2 in plaques. Moreover, in vitro experiments showed that both GAS5 and ANXA2 contributed to macrophage apoptosis and inflammation. Rescue assays revealed that the inflammatory effects of GAS5 on macrophages were ANXA2-dependent. In vivo experiments confirmed the highly expression of Gas5 and Anxa2 in the plaque group. We identified the atherogenic roles of GAS5 and ANXA2 in the inflammatory response of macrophages. The inflammatory response in ox-LDL-treated macrophages was found to be mediated by GAS5-ANXA2 regulation, opening new avenues for atherosclerosis therapy.
Collapse
Affiliation(s)
- Yuzhou Xue
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Hu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Shikai Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenyan Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Liu
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Shen
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longxiang Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dingyi Lv
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenming Zhang
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| | - Jingyu Wang
- Renal Division Key Laboratory of Renal Disease Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Peking University First Hospital, Peking University Institute of Nephrology, Ministry of Health of China, Beijing, 100034, China
| | - Xiang Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Nusair SD, Abandah B, Al-Share QY, Abu-Qatouseh L, Ahmad MIA. Toxicity induced by orellanine from the mushroom Cortinarius orellanus in primary renal tubular proximal epithelial cells (RPTEC): Novel mechanisms of action. Toxicon 2023; 235:107312. [PMID: 37806454 DOI: 10.1016/j.toxicon.2023.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
The toxicity of Orellanine (OR), a significant factor in mushroom poisoning, has severe effects on the kidneys, particularly the proximal tubules. This study investigated the acute toxicity of OR from the Cortinarius orellanus mushroom in human Primary Renal Tubular Proximal Epithelial Cells (RPTEC). Additionally, the half maximal inhibitory concentration (IC50) of OR in MCF-7 cells was established. RPTEC were subjected to a 6.25 μg/ml dose of orellanine for 24 h, while Control cells were exposed to 0.05% DMSO (vehicle). The RT2 Profiler™ PCR Array Human Nephrotoxicity was utilized to identify genes that were upregulated or downregulated. Western blotting confirmed the protein product of some significantly regulated genes compared to control cells. The IC50 of OR was found to be 319.2 μg/ml. The mechanism of OR toxicity involved several pathways including apoptosis, metal ion binding, cell proliferation, tissue remodeling, xenobiotic metabolism, transporters, extracellular matrix molecules, and cytoskeleton pathways. Other genes from non-specific pathways were also identified. These findings enhance our understanding of OR nephrotoxicity and pave the way for future research into potential treatments or antidotes for natural mushroom poisoning.
Collapse
Affiliation(s)
- Shreen D Nusair
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Jordan.
| | - Bayan Abandah
- Department of Legal Medicine, Toxicology and Forensic Science, Faculty of Medicine, Jordan University of Science and Technology, Jordan
| | - Qusai Y Al-Share
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Jordan
| | - Luay Abu-Qatouseh
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy, University of Petra, Jordan
| | - Mohammad I A Ahmad
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy & Medical Sciences, University of Petra, Jordan; Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
12
|
Lv W, Zheng Y, Jiao J, Fu Y, Xu T, Zhang L, Zhang Z, Ma N. The Role of XBP1 in bone metabolism. Front Endocrinol (Lausanne) 2023; 14:1217579. [PMID: 37795354 PMCID: PMC10546391 DOI: 10.3389/fendo.2023.1217579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Bone is a dynamic organ that, once formed, undergoes a constant remodeling process that includes bone resorption and synthesis. Osteoclasts and osteoblasts are primarily responsible for controlling this process. X-box binding protein 1 (XBP1), a transcription factor, affects the metabolism of bones in various ways. In recent years, numerous studies have revealed that XBP1 plays a vital role in bone metabolism, including osteoclast and osteoblast development, as well as in regulating immune cell differentiation that affects the immune microenvironment of bone remodeling. In this review, we highlight the regulatory mechanisms of XBP1 on osteoclasts and osteoblasts, how XBP1 affects the immune microenvironment of bone remodeling by influencing the differentiation of immune cells, and predict the possible future research directions of XBP1 to provide new insights for the treatment of bone-related metabolic diseases.
Collapse
Affiliation(s)
- Wenhao Lv
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Junjun Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Fu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Tingrui Xu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Ning Ma
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
13
|
de Souza Ferreira LP, da Silva RA, Gil CD, Geisow MJ. Annexin A1, A2, A5, and A6 involvement in human pathologies. Proteins 2023; 91:1191-1204. [PMID: 37218507 DOI: 10.1002/prot.26512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
The human genome codes for 12 annexins with highly homologous membrane-binding cores and unique amino termini, which endow each protein with its specific biological properties. Not unique to vertebrate biology, multiple annexin orthologs are present in almost all eukaryotes. Their ability to combine either dynamically or constitutively with membrane lipid bilayers is hypothetically the key property that has led to their retention and multiple adaptation in eukaryotic molecular cell biology. Annexin genes are differentially expressed in many cell types but their disparate functions are still being discovered after more than 40 years of international research. A picture is emerging from gene knock down and knock out studies of individual annexins that these are important supporters rather than critical players in organism development and normal cell and tissue function. However, they appear to be highly significant "early responders" toward challenges arising from cell and tissue abiotic or biotic stress. In humans, recent focus has been on involvement of the annexin family for its involvement in diverse pathologies, especially cancer. From what has become an exceedingly broad field of investigation, we have selected four annexins in particular: AnxA1, 2, 5, and 6. Present both within and external to cells, these annexins are currently under intensive investigation in translational research as biomarkers of cellular dysfunction and as potential therapeutic targets for inflammatory conditions, neoplasia, and tissue repair. Annexin expression and release in response to biotic stress appears to be a balancing act. Under- or over-expression in different circumstances appears to damage rather than restore a healthy homeostasis. This review reflects briefly on what is already known of the structures and molecular cell biology of these selected annexins and considers their actual and potential roles in human health and disease.
Collapse
Affiliation(s)
- Luiz Philipe de Souza Ferreira
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Michael J Geisow
- National Institute for Medical Research, Mill Hill, London UK & Delta Biotechnology Ltd, Nottingham, UK
| |
Collapse
|
14
|
Beusch CM, Simonson OE, Wedin JO, Sabatier P, Felldin U, Kadekar S, Österholm C, Végvári Á, Zubarev RA, Fromell K, Nilson B, James S, Ståhle E, Grinnemo KH, Rodin S. Analysis of local extracellular matrix identifies different aetiologies behind bicuspid and tricuspid aortic valve degeneration and suggests therapies. Cell Mol Life Sci 2023; 80:268. [PMID: 37632572 PMCID: PMC10460373 DOI: 10.1007/s00018-023-04926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Aortic valve degeneration (AVD) is a life-threatening condition that has no medical treatment and lacks individual therapies. Although extensively studied with standard approaches, aetiologies behind AVD are unclear. We compared abundances of extracellular matrix (ECM) proteins from excised valve tissues of 88 patients with isolated AVD of normal tricuspid (TAV) and congenital bicuspid aortic valves (BAV), quantified more than 1400 proteins per ECM sample by mass spectrometry, and demonstrated that local ECM preserves molecular cues of the pathophysiological processes. The BAV ECM showed enrichment with fibrosis markers, namely Tenascin C, Osteoprotegerin, and Thrombospondin-2. The abnormal physical stress on BAV may cause a mechanical injury leading to a continuous Tenascin C-driven presence of myofibroblasts and persistent fibrosis. The TAV ECM exhibited enrichment with Annexin A3 (p = 1.1 × 10-16 and the fold change 6.5) and a significant deficit in proteins involved in high-density lipid metabolism. These results were validated by orthogonal methods. The difference in the ECM landscape suggests distinct aetiologies between AVD of BAV and TAV; warrants different treatments of the patients with BAV and TAV; elucidates the molecular basis of AVD; and implies possible new therapeutic approaches. Our publicly available database (human_avd_ecm.surgsci.uu.se) is a rich source for medical doctors and researchers who are interested in AVD or heart ECM in general. Systematic proteomic analysis of local ECM using the methods described here may facilitate future studies of various tissues and organs in development and disease.
Collapse
Affiliation(s)
- Christian M Beusch
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Oscar E Simonson
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, 752 37, Uppsala, Sweden
- Department of Cardio-Thoracic Surgery and Anesthesia, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Johan O Wedin
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, 752 37, Uppsala, Sweden
- Department of Cardio-Thoracic Surgery and Anesthesia, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Pierre Sabatier
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, 752 37, Uppsala, Sweden
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ulrika Felldin
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, 752 37, Uppsala, Sweden
- Department of Cardio-Thoracic Surgery and Anesthesia, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Sandeep Kadekar
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, 752 37, Uppsala, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Karin Fromell
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Bo Nilson
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Stefan James
- Department of Medical Sciences, Uppsala University, 752 37, Uppsala, Sweden
| | - Elisabeth Ståhle
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, 752 37, Uppsala, Sweden
- Department of Cardio-Thoracic Surgery and Anesthesia, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Karl-Henrik Grinnemo
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, 752 37, Uppsala, Sweden
- Department of Cardio-Thoracic Surgery and Anesthesia, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Sergey Rodin
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, 752 37, Uppsala, Sweden.
- Department of Cardio-Thoracic Surgery and Anesthesia, Uppsala University Hospital, 751 85, Uppsala, Sweden.
| |
Collapse
|
15
|
Zhang H, Zhang Z, Guo T, Chen G, Liu G, Song Q, Li G, Xu F, Dong X, Yang F, Cao C, Zhong D, Li S, Li Y, Wang M, Li B, Yang L. Annexin A protein family: Focusing on the occurrence, progression and treatment of cancer. Front Cell Dev Biol 2023; 11:1141331. [PMID: 36936694 PMCID: PMC10020606 DOI: 10.3389/fcell.2023.1141331] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The annexin A (ANXA) protein family is a well-known tissue-specific multigene family that encodes Ca2+ phospholipid-binding proteins. A considerable amount of literature is available on the abnormal expression of ANXA proteins in various malignant diseases, including cancer, atherosclerosis and diabetes. As critical regulatory molecules in cancer, ANXA proteins play an essential role in cancer progression, proliferation, invasion and metastasis. Recent studies about their structure, biological properties and functions in different types of cancers are briefly summarised in this review. We further discuss the use of ANXA as new class of targets in the clinical diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Tingting Guo
- Health Science Center, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, China
| | - Guichun Li
- Department of Traditional Chinese Medicine, The People’s Hospital of Zhaoyuan City, Yantai, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| |
Collapse
|
16
|
Fluid Shear Stress Regulates Osteogenic Differentiation via AnnexinA6-Mediated Autophagy in MC3T3-E1 Cells. Int J Mol Sci 2022; 23:ijms232415702. [PMID: 36555344 PMCID: PMC9779398 DOI: 10.3390/ijms232415702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Fluid shear stress (FSS) facilitates bone remodeling by regulating osteogenic differentiation, and extracellular matrix maturation and mineralization. However, the underlying molecular mechanisms of how mechanical stimuli from FSS are converted into osteogenesis remain largely unexplored. Here, we exposed MC3T3-E1 cells to FSS with different intensities (1 h FSS with 0, 5, 10, and 20 dyn/cm2 intensities) and treatment durations (10 dyn/cm2 FSS with 0, 0.5, 1, 2 and 4 h treatment). The results demonstrate that the 1 h of 10 dyn/cm2 FSS treatment greatly upregulated the expression of osteogenic markers (Runx2, ALP, Col I), accompanied by AnxA6 activation. The genetic ablation of AnxA6 suppressed the autophagic process, demonstrating lowered autophagy markers (Beclin1, ATG5, ATG7, LC3) and decreased autophagosome formation, and strongly reduced osteogenic differentiation induced by FSS. Furthermore, the addition of autophagic activator rapamycin to AnxA6 knockdown cells stimulated autophagy process, and coincided with more expressions of osteogenic proteins ALP and Col I under both static and FSS conditions. In conclusion, the findings in this study reveal a hitherto unidentified relationship between FSS-induced osteogenic differentiation and autophagy, and point to AnxA6 as a key mediator of autophagy in response to FSS, which may provide a new target for the treatment of osteoporosis and other diseases.
Collapse
|
17
|
Wang CL, Xu YW, Yan XJ, Zhang CL. Usability of serum annexin A7 as a biochemical marker of poor outcome and early neurological deterioration after acute primary intracerebral hemorrhage: A prospective cohort study. Front Neurol 2022; 13:954631. [PMID: 36003296 PMCID: PMC9393537 DOI: 10.3389/fneur.2022.954631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveAnnexin A7 (ANXA7), a calcium-dependent phospholipid-binding protein, may act to aggravate brain injury. This study aimed to assess the clinical utility of serum ANXA7 as a predictor of severity, early neurological deterioration (END), and prognosis after intracerebral hemorrhage (ICH).MethodsA total of 126 ICH patients and 126 healthy controls were enrolled. Symptomatic severity was evaluated utilizing the National Institutes of Health Stroke Scale (NIHSS) score. The lesion volume of ICH was measured according to the ABC/2 method. END was referred to as an increase of 4 or greater points in the NIHSS score or death at post-stroke 24 h. The unfavorable functional outcome was a combination of death and major disability at post-stroke 90 days.ResultsSerum ANXA7 levels were significantly higher in patients than in controls (median, 46.5 vs. 9.7 ng/ml; P < 0.001). Serum ANXA7 levels were independently correlated with NIHSS score [beta: 0.821; 95% confidence interval (CI): 0.106–1.514; variance inflation factor: 5.180; t = 2.573; P = 0.014] and hematoma volume (beta: 0.794; 95% CI: 0.418–1.173; variance inflation factor: 5.281; t = 2.781; P = 0.007). Serum ANXA7 levels were significantly elevated with increase in modified Rankin scale scores (P < 0.001). Also, serum ANXA7, which was identified as a categorical variable, independently predicted END and an unfavorable outcome with odds ratio values of 3.958 (95% CI: 1.290–12.143; P = 0.016) and 2.755 (95% CI: 1.051–7.220; P = 0.039), respectively. Moreover, serum ANXA7 levels efficiently differentiated END (area under the curve: 0.781; 95% CI: 0.698–0.849) and an unfavorable outcome (area under the curve: 0.776; 95% CI: 0.693–0.846).ConclusionSerum ANXA7 may represent a useful blood-derived biomarker for assessing the severity, END, and prognosis of ICH.
Collapse
Affiliation(s)
- Chuan-Liu Wang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yan-Wen Xu
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xin-Jiang Yan
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Cheng-Liang Zhang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- *Correspondence: Cheng-Liang Zhang
| |
Collapse
|