1
|
Amontailak S, Titapun A, Jusakul A, Thanan R, Kimawaha P, Jamnongkan W, Thanee M, Sirithawat P, Techasen A. Prognostic Values of Ferroptosis-Related Proteins ACSL4, SLC7A11, and CHAC1 in Cholangiocarcinoma. Biomedicines 2024; 12:2091. [PMID: 39335604 PMCID: PMC11428419 DOI: 10.3390/biomedicines12092091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The epithelial malignant tumor known as cholangiocarcinoma (CCA) is most commonly found in Southeast Asia, particularly in northeastern Thailand. Previous research has indicated that the overexpression of acyl-CoA synthetase long-chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11), and ChaC glutathione-specific γ-glutamylcyclotransferase (CHAC1) as ferroptosis-related proteins is associated with poorer prognosis in several cancers. The role of these three proteins in CCA is still unclear. The present study aimed to investigate the expression levels of ACSL4, SLC7A11, and CHAC1, all potential ferroptosis biomarkers, in CCA. METHODS The ACSL4, SLC7A11, and CHAC1 protein expression levels in 137 CCA tissues were examined using immunohistochemistry, while 61 CCA serum samples were evaluated using indirect ELISA. The associations between the expression levels of ACSL4, SLC7A11, and CHAC1 and patient clinicopathological data were evaluated to determine the clinical significance of these proteins. RESULTS The expression levels of ACSL4, SLC7A11, and CHAC1 were assessed in CCA tissues. A significant association was observed between high ACSL4 levels and extrahepatic CCA, tumor growth type, and elevated alanine transferase (ALT). There was also a positive association between elevated SLC7A11 levels and tumor growth type. Additionally, the upregulation of CHAC1 was significantly associated with a shorter survival time in patients. High levels of ACSL4 and SLC7A11 in CCA sera were both significantly associated with advanced tumor stages and abnormal liver function test results, indicating that they could be used as a reliable prognostic biomarker panel in patients with CCA. CONCLUSIONS The results of the present study demonstrated that the upregulation of ACSL4, SLC7A11, and CHAC1 could be used as a valuable biomarker panel for predicting prognosis parameters in CCA. Furthermore, ACSL4 and SLC7A11 could potentially serve as complementary markers for improving the accuracy of prognosis prediction when CCA sera is used. These less invasive biomarkers could facilitate effective treatment planning.
Collapse
Affiliation(s)
- Supakan Amontailak
- Medical Science Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Attapol Titapun
- Departments of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Departments of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Phongsaran Kimawaha
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wassana Jamnongkan
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Malinee Thanee
- Departments of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Papitchaya Sirithawat
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Mao S, Shan Y, Yu X, Yang Y, Wu S, Lu C. Development and validation of a novel preoperative clinical model for predicting lymph node metastasis in perihilar cholangiocarcinoma. BMC Cancer 2024; 24:297. [PMID: 38438912 PMCID: PMC10913359 DOI: 10.1186/s12885-024-12068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUD We aimed to develop a novel preoperative nomogram to predict lymph node metastasis (LNM) in perihilar cholangiocarcinoma (pCCA) patients. METHODS 160 pCCA patients were enrolled at Lihuili Hospital from July 2006 to May 2022. A novel nomogram model was established to predict LNM in pCCA patients based on the independent predictive factors selected by the multivariate logistic regression model. The precision of the nomogram model was evaluated through internal and external validation with calibration curve statistics and the concordance index (C-index). Receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were used to evaluate and determine the clinical utility of the nomogram. RESULTS Multivariate logistic regression demonstrated that age (OR = 0.963, 95% CI: 0.930-0.996, P = 0.030), CA19-9 level (> 559.8 U/mL vs. ≤559.8 U/mL: OR = 3.162, 95% CI: 1.519-6.582, P = 0.002) and tumour diameter (OR = 1.388, 95% CI: 1.083-1.778, P = 0.010) were independent predictive factors of LNM in pCCA patients. The C-index was 0.763 (95% CI: 0.667-0.860) and 0.677 (95% CI: 0.580-0.773) in training cohort and validation cohort, respectively. ROC curve analysis indicated the comparative stability and adequate discriminative ability of nomogram. The sensitivity and specificity were 0.820 and 0.652 in training cohort and 0.704 and 0.649 in validation cohort, respectively. DCA revealed that the nomogram model could augment net benefits in the prediction of LNM in pCCA patients. CONCLUSIONS The novel prediction model is useful for predicting LNM in pCCA patients and showed adequate discriminative ability and high predictive accuracy.
Collapse
Affiliation(s)
- Shuqi Mao
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Yuying Shan
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Xi Yu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Yong Yang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Shengdong Wu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China.
| | - Caide Lu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China.
| |
Collapse
|
3
|
Zhang J, Lai Z, Ding R, Zhou J, Yuan Z, Li D, Qin X, Zhou J, Li Z. Diagnostic potential of site-specific serotransferrin N-glycosylation in discriminating different liver diseases. Clin Chim Acta 2023; 539:175-183. [PMID: 36543268 DOI: 10.1016/j.cca.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered glycosylation modulates the structure and function of disease-related proteins. The associations between serotransferrin (STF) N-glycosylation and liver diseases (LDs) have been revealed. However, how intact N-glycopeptides vary among different types of liver diseases remains unclear. METHODS Intact STF N-glycopeptides from patients with chronic liver disease (CLD, n = 92), primary liver cancer (PLC, n = 123), metastatic liver cancer (MLC, n = 57), and healthy controls (HCs, n = 59) were determined using high-resolution mass spectrometry. RESULTS Significant changes were displayed in STF glycosylation among 4 groups. The LD screening model, including Asn432 G1S/G2S, Asn432 G2S/G2S2, and Asn630 G2NS2/G2FNS2, was constructed to differentiate LDs from HCs, with a AUC of 0.92. The liver cancer (LC) diagnostic model, a combination of Asn432 G1-N/G1S-N, Asn432 G1/G2, Asn432 G2FS/G2FS2, and Asn630 G1S-N /G1S, showed good performance in discriminating LC from CLD (AUC = 0.93). Moreover, AFP-negative LC patients (93 %) were successfully predicted by the LC diagnostic model. Furthermore, the MLC triage model, composed of Asn432 G1/G2, Asn432 G3F/G3FS, Asn630 G2/G2S, Asn630 G2S2/G2NS2, and Asn630 G3FS/G3FS2, yielded an AUC of 0.98 between PLC and MLC. CONCLUSIONS STF N-glycosylation is a potential biomarker for the accurate classification of different LDs.
Collapse
Affiliation(s)
- Jiyun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Rui Ding
- Department of Laboratory Medical, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences and Peking Union Medicine College, Beijing 100730, China
| | - Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Xuzhen Qin
- Department of Laboratory Medical, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences and Peking Union Medicine College, Beijing 100730, China.
| | - Jiang Zhou
- Department of Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|