1
|
Riabkova NS, Bogomolova AP, Kogan AE, Katrukha IA, Vylegzhanina AV, Pevzner DV, Alieva AK, Bereznikova AV, Katrukha AG. Interaction of heparin with human cardiac troponin complex and its influence on the immunodetection of troponins in human blood samples. Clin Chem Lab Med 2024; 62:2316-2325. [PMID: 38738903 DOI: 10.1515/cclm-2024-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Heparin is a highly charged polysaccharide used as an anticoagulant to prevent blood coagulation in patients with presumed myocardial infarction and to prepare heparin plasma samples for laboratory tests. There are conflicting data regarding the effects of heparin on the measurement of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT), which are used for the immunodiagnosis of acute myocardial infarction. In this study, we investigated the influence of heparin on the immunodetection of human cardiac troponins. METHODS Gel filtration (GF) techniques and sandwich fluoroimmunoassay were performed. The regions of сTnI and cTnT that are affected by heparin were investigated with a panel of anti-cTnI and anti-cTnT monoclonal antibodies, specific to different epitopes. RESULTS Heparin was shown to bind to the human cardiac full-size ternary troponin complex (ITC-complex) and free cTnT, which increased their apparent molecular weights in GF studies. Heparin did not bind to the low molecular weight ITC-complex and to binary cTnI-troponin С complex. We did not detect any sites on cTnI in the ITC-complex that were specifically affected by heparin. In contrast, cTnT regions limited to approximately 69-99, 119-138 and 145-164 amino acid residues (aar) in the ITC-complex and a region that lies approximately between 236 and 255 aar of free cTnT were prone to heparin influence. CONCLUSIONS Heparin binds to the ITC-complex via cTnT, interacting with several sites on the N-terminal and/or central parts of the cTnT molecule, which might influence the immunodetection of analytes in human blood.
Collapse
Affiliation(s)
- Natalia S Riabkova
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Agnessa P Bogomolova
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander E Kogan
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan A Katrukha
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Dmitry V Pevzner
- National Medical Research Centre of Cardiology Named After Academician E.I. Chazov, Moscow, Russia
| | - Amina K Alieva
- National Medical Research Centre of Cardiology Named After Academician E.I. Chazov, Moscow, Russia
| | - Anastasia V Bereznikova
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey G Katrukha
- HyTest Ltd., Turku, Finland
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Riabkova NS, Kogan AE, Katrukha IA, Vylegzhanina AV, Bogomolova AP, Alieva AK, Pevzner DV, Bereznikova AV, Katrukha AG. Influence of Anticoagulants on the Dissociation of Cardiac Troponin Complex in Blood Samples. Int J Mol Sci 2024; 25:8919. [PMID: 39201603 PMCID: PMC11354535 DOI: 10.3390/ijms25168919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Immunodetection of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) in blood samples is widely used for the diagnosis of acute myocardial infarction. The cardiac troponin complex (ITC-complex), comprising cTnI, cTnT, and troponin C (TnC), makes up a large portion of troponins released into the bloodstream after the necrosis of cardiomyocytes. However, the stability of the ITC-complex has not been fully investigated. This study aimed to investigate the stability of the ITC-complex in blood samples. A native ITC-complex was incubated in buffer solutions, serum, and citrate, heparin, or EDTA plasma at various temperatures. Western blotting and gel filtration were performed, and troponins were detected using specific monoclonal antibodies. The ITC-complex dissociated at 37 °C in buffers with or without anticoagulants, in citrate, heparin, and EDTA plasmas, and in serum, into a binary cTnI-TnC complex (IC-complex) and free cTnT. In plasma containing heparin and EDTA, the IC-complex further dissociated into free TnC and cTnI. No dissociation was found at 4 °C or at room temperature (RT) in all matrices within 24 h except for EDTA plasma. After incubation at 37 °C in EDTA plasma and serum, dissociation was accompanied by proteolytic degradation of both cTnI and cTnT. The presence of anti-troponin autoantibodies in the sample impeded dissociation of the ITC-complex. The ITC-complex dissociates in vitro to form the IC-complex and free cTnT at 37 °C but is mostly stable at 4 °C or RT. Further dissociation of the IC-complex occurs at 37 °C in plasmas containing heparin and EDTA.
Collapse
Affiliation(s)
- Natalia S. Riabkova
- HyTest Ltd., Intelligate 1, 6th Floor, Joukahaisenkatu 6, 20520 Turku, Finland; (N.S.R.); (A.E.K.); (A.V.V.); (A.P.B.); (A.V.B.); (A.G.K.)
- Department of Biochemistry, Faculty of Biology, Moscow State University, Leninskie Gory 1, str. 12, 119234 Moscow, Russia
| | - Alexander E. Kogan
- HyTest Ltd., Intelligate 1, 6th Floor, Joukahaisenkatu 6, 20520 Turku, Finland; (N.S.R.); (A.E.K.); (A.V.V.); (A.P.B.); (A.V.B.); (A.G.K.)
- Department of Biochemistry, Faculty of Biology, Moscow State University, Leninskie Gory 1, str. 12, 119234 Moscow, Russia
| | - Ivan A. Katrukha
- HyTest Ltd., Intelligate 1, 6th Floor, Joukahaisenkatu 6, 20520 Turku, Finland; (N.S.R.); (A.E.K.); (A.V.V.); (A.P.B.); (A.V.B.); (A.G.K.)
- Department of Biochemistry, Faculty of Biology, Moscow State University, Leninskie Gory 1, str. 12, 119234 Moscow, Russia
| | - Alexandra V. Vylegzhanina
- HyTest Ltd., Intelligate 1, 6th Floor, Joukahaisenkatu 6, 20520 Turku, Finland; (N.S.R.); (A.E.K.); (A.V.V.); (A.P.B.); (A.V.B.); (A.G.K.)
| | - Agnessa P. Bogomolova
- HyTest Ltd., Intelligate 1, 6th Floor, Joukahaisenkatu 6, 20520 Turku, Finland; (N.S.R.); (A.E.K.); (A.V.V.); (A.P.B.); (A.V.B.); (A.G.K.)
- Department of Biochemistry, Faculty of Biology, Moscow State University, Leninskie Gory 1, str. 12, 119234 Moscow, Russia
| | - Amina K. Alieva
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Akademik Chazov str., 15A, 121552 Moscow, Russia; (A.K.A.); (D.V.P.)
| | - Dmitry V. Pevzner
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Akademik Chazov str., 15A, 121552 Moscow, Russia; (A.K.A.); (D.V.P.)
| | - Anastasia V. Bereznikova
- HyTest Ltd., Intelligate 1, 6th Floor, Joukahaisenkatu 6, 20520 Turku, Finland; (N.S.R.); (A.E.K.); (A.V.V.); (A.P.B.); (A.V.B.); (A.G.K.)
- Department of Biochemistry, Faculty of Biology, Moscow State University, Leninskie Gory 1, str. 12, 119234 Moscow, Russia
| | - Alexey G. Katrukha
- HyTest Ltd., Intelligate 1, 6th Floor, Joukahaisenkatu 6, 20520 Turku, Finland; (N.S.R.); (A.E.K.); (A.V.V.); (A.P.B.); (A.V.B.); (A.G.K.)
- Department of Biochemistry, Faculty of Biology, Moscow State University, Leninskie Gory 1, str. 12, 119234 Moscow, Russia
| |
Collapse
|
3
|
Salonen SM, Tuominen TJK, Raiko KIS, Vasankari T, Aalto R, Hellman TA, Lahtinen SE, Soukka T, Airaksinen KEJ, Wittfooth ST. Highly Sensitive Immunoassay for Long Forms of Cardiac Troponin T Using Upconversion Luminescence. Clin Chem 2024; 70:1037-1045. [PMID: 38888909 DOI: 10.1093/clinchem/hvae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Long cardiac troponin T (cTnT) has been proposed to be a promising and more specific biomarker of acute myocardial infarction (AMI). As it represents a subfraction of circulating cTnT, detection of very low concentrations is a requirement. The aim of this study was to develop a novel, highly sensitive immunoassay for long cTnT. METHODS A two-step sandwich-type immunoassay for long cTnT was developed, utilizing upconverting nanoparticles (UCNPs) as reporters. The limits of detection and quantitation were determined for the assay. Linearity and matrix effects were evaluated. Performance with clinical samples was assessed with samples from patients with non-ST elevation myocardial infarction (NSTEMI, n = 30) and end-stage renal disease (ESRD, n = 37) and compared to a previously developed time-resolved fluorescence (TRF)-based long cTnT assay and a commercial high-sensitivity cTnT assay. RESULTS The novel assay reached a 28-fold lower limit of detection (0.40 ng/L) and 14-fold lower limit of quantitation (1.79 ng/L) than the previously developed TRF long cTnT assay. Li-heparin and EDTA plasma, but not serum, were found to be suitable sample matrixes for the assay. In a receiver operating characteristics curve analysis, the troponin ratio (long/total cTnT) determined with the novel assay showed excellent discrimination between NSTEMI and ESRD with an area under the curve of 0.986 (95% CI, 0.967-1.000). CONCLUSIONS By utilizing upconversion luminescence technology, we developed a highly sensitive long cTnT assay. This novel assay can be a valuable tool for investigating the full potential of long cTnT as a biomarker for AMI. ClinicalTrials.gov Registration Number: NCT04465591.
Collapse
Affiliation(s)
- Selma M Salonen
- Biotechnology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Tuulia J K Tuominen
- Biotechnology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Kirsti I S Raiko
- Biotechnology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Tuija Vasankari
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Rami Aalto
- Biotechnology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Tapio A Hellman
- Kidney Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Satu E Lahtinen
- Biotechnology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Tero Soukka
- Biotechnology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Saara T Wittfooth
- Biotechnology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Zhao Q, Zhang Q, Zhao X, Tian Z, Sun M, He L. MG53: A new protagonist in the precise treatment of cardiomyopathies. Biochem Pharmacol 2024; 222:116057. [PMID: 38367817 DOI: 10.1016/j.bcp.2024.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Cardiomyopathies (CMs) are highly heterogeneous progressive heart diseases characterised by structural and functional abnormalities of the heart, whose intricate pathogenesis has resulted in a lack of effective treatment options. Mitsugumin 53 (MG53), also known as Tripartite motif protein 72 (TRIM72), is a tripartite motif family protein from the immuno-proteomic library expressed primarily in the heart and skeletal muscle. Recent studies have identified MG53 as a potential cardioprotective protein that may play a crucial role in CMs. Therefore, the objective of this review is to comprehensively examine the underlying mechanisms mediated by MG53 responsible for myocardial protection, elucidate the potential role of MG53 in various CMs as well as its dominant status in the diagnosis and prognosis of human myocardial injury, and evaluate the potential therapeutic value of recombinant human MG53 (rhMG53) in CMs. It is expected to yield novel perspectives regarding the clinical diagnosis and therapeutic treatment of CMs.
Collapse
Affiliation(s)
- Qianru Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, PR China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China.
| | - Lian He
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, Liaoning, PR China.
| |
Collapse
|
5
|
Bollen Pinto B, Ackland GL. Pathophysiological mechanisms underlying increased circulating cardiac troponin in noncardiac surgery: a narrative review. Br J Anaesth 2024; 132:653-666. [PMID: 38262855 DOI: 10.1016/j.bja.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Assay-specific increases in circulating cardiac troponin are observed in 20-40% of patients after noncardiac surgery, depending on patient age, type of surgery, and comorbidities. Increased cardiac troponin is consistently associated with excess morbidity and mortality after noncardiac surgery. Despite these findings, the underlying mechanisms are unclear. The majority of interventional trials have been designed on the premise that ischaemic cardiac disease drives elevated perioperative cardiac troponin concentrations. We consider data showing that elevated circulating cardiac troponin after surgery could be a nonspecific marker of cardiomyocyte stress. Elevated concentrations of circulating cardiac troponin could reflect coordinated pathological processes underpinning organ injury that are not necessarily caused by ischaemia. Laboratory studies suggest that matching of coronary artery autoregulation and myocardial perfusion-contraction coupling limit the impact of systemic haemodynamic changes in the myocardium, and that type 2 ischaemia might not be the likeliest explanation for cardiac troponin elevation in noncardiac surgery. The perioperative period triggers multiple pathological mechanisms that might cause cardiac troponin to cross the sarcolemma. A two-hit model involving two or more triggers including systemic inflammation, haemodynamic strain, adrenergic stress, and autonomic dysfunction might exacerbate or initiate acute myocardial injury directly in the absence of cell death. Consideration of these diverse mechanisms is pivotal for the design and interpretation of interventional perioperative trials.
Collapse
Affiliation(s)
- Bernardo Bollen Pinto
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Ivanova AD, Kotova DA, Khramova YV, Morozova KI, Serebryanaya DV, Bochkova ZV, Sergeeva AD, Panova AS, Katrukha IA, Moshchenko AA, Oleinikov VA, Semyanov AV, Belousov VV, Katrukha AG, Brazhe NA, Bilan DS. Redox differences between rat neonatal and adult cardiomyocytes under hypoxia. Free Radic Biol Med 2024; 211:145-157. [PMID: 38043869 DOI: 10.1016/j.freeradbiomed.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.
Collapse
Affiliation(s)
- Alexandra D Ivanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Daria A Kotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yulia V Khramova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ksenia I Morozova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Zhanna V Bochkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia D Sergeeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasiya S Panova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ivan A Katrukha
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Aleksandr A Moshchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Vladimir A Oleinikov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow, 115409, Russia
| | - Alexey V Semyanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Moscow, 119435, Russia; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Alexey G Katrukha
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nadezda A Brazhe
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| |
Collapse
|