1
|
Olofsson HE, Englund E. Increased frontocortical microvascular raspberry density in frontotemporal lobar degeneration compared to Lewy body disease and control cases: a neuropathological study. FREE NEUROPATHOLOGY 2025; 6:7. [PMID: 40052111 PMCID: PMC11884261 DOI: 10.17879/freeneuropathology-2025-6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/20/2025] [Indexed: 03/09/2025]
Abstract
Background: Brain raspberries are histologically defined microvascular entities that are highly prevalent in the neocortex. Increased cortical raspberry density occurs in vascular dementia, but also with advancing age. Here, we examined the raspberry density in two neurodegenerative diseases, wherein vascular alterations distinct from conventional vascular risk factors have been indicated: frontotemporal lobar degeneration (FTLD) and Lewy body disease (LBD). Methods: This retrospective study included 283 clinically autopsied individuals: 105 control cases without neurodegenerative disease, 98 FTLD cases (mainly FTLD-tau and FTLD-TDP), and 80 LBD cases (mainly neocortical). The raspberry density was quantified on haematoxylin-eosin-stained tissue sections from the frontal cortex, and the frontocortical atrophy was ranked 0-3. Results: There was a higher raspberry density in the FTLD group compared to both other groups (P ≤ 0.001; Games-Howell post hoc test). The difference between the FTLD and LBD groups remained significant in multiple linear regression models that included age, sex, and either brain weight (P = 0.034) or cortical atrophy (P = 0.012). The difference between the FTLD and control groups remained significant when including age, sex, and brain weight in the model (P = 0.004), while a trend towards significance was demonstrated when including age, sex, and cortical atrophy (P = 0.054). Further analyses of the FTLD group revealed a trend towards a positive correlation between raspberry density and cortical atrophy (P = 0.062; Spearman rank correlation). Comparisons of FTLD subgroups were inconclusive. Conclusion: The frontocortical raspberry density is increased in FTLD. An examination of the raspberry density in relation to a quantitative measure of cortical atrophy is motivated to validate the results. Future studies are needed to determine whether increased raspberry density in FTLD could function as a marker for more widespread vascular alterations, and to elucidate the relation between microvascular alterations and neurodegenerative disease.
Collapse
Affiliation(s)
- Henric Ek Olofsson
- Division of Pathology, Department of Clinical Sciences
Lund, Lund University, Lund, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences
Lund, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Ek Olofsson H, Österling Delshammar T, Englund E. Cortical microvascular raspberries and ageing: an independent but not exclusive relationship. Acta Neuropathol Commun 2023; 11:195. [PMID: 38087325 PMCID: PMC10714499 DOI: 10.1186/s40478-023-01700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Raspberries are cerebral microvascular formations of unknown origin, defined as three or more transversally sectioned vascular lumina surrounded by a common perivascular space. We have previously demonstrated an increased raspberry density in the cortex of patients with vascular dementia and cerebral atherosclerosis, while studies by other authors on overlapping and synonymously defined vascular entities mainly associate them with advancing age. The aim of the present study was to examine the relationship between raspberries and age in a large study sample while including multiple potential confounding factors in the analysis. MATERIALS AND METHODS Our study sample consisted of 263 individuals aged 20-97 years who had undergone a clinical autopsy including a neuropathological examination. The cortical raspberry density had either been quantified as part of a previous study or was examined de novo in a uniform manner on haematoxylin- and eosin-stained tissue sections from the frontal lobe. The medical records and autopsy reports were assessed regarding neurodegeneration, cerebral infarcts, cerebral atherosclerosis and small vessel disease, cardiac hypertrophy, nephrosclerosis, hypertension, and diabetes mellitus. With the patients grouped according to 10-year age interval, non-parametric tests (the Kruskal-Wallis test, followed by pairwise testing with Bonferroni-corrected P values) and multiple linear regression models (not corrected for multiple tests) were performed. RESULTS The average raspberry density increased with advancing age. The non-parametric tests demonstrated statistically significant differences in raspberry density when comparing the groups aged 60-99 years and 70-99 years to those aged 20-29 years (P < 0.012) and 30-59 years (P < 0.011), respectively. The multiple linear regression models demonstrated positive associations with age interval (P < 0.001), cerebral atherosclerosis (P = 0.024), cardiac hypertrophy (P = 0.021), hypertension subgrouped for organ damage (P = 0.006), and female sex (P = 0.004), and a tendency towards a negative association with Alzheimer's disease neuropathologic change (P = 0.048). CONCLUSION The raspberry density of the frontal cortex increases with advancing age, but our results also indicate associations with acquired pathologies. Awareness of the biological and pathological context where raspberries occur can guide further research on their origin.
Collapse
Affiliation(s)
- Henric Ek Olofsson
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 25 B, 22185, Lund, Sweden.
| | - Thea Österling Delshammar
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 25 B, 22185, Lund, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 25 B, 22185, Lund, Sweden
| |
Collapse
|
3
|
Ighodaro ET, Shahidehpour RK, Bachstetter AD, Abner EL, Nelson RS, Fardo DW, Shih AY, Grant RI, Neltner JH, Schmitt FA, Jicha GA, Kryscio RJ, Wilcock DM, Van Eldik LJ, Nelson PT. A neuropathologic feature of brain aging: multi-lumen vascular profiles. Acta Neuropathol Commun 2023; 11:138. [PMID: 37641147 PMCID: PMC10464008 DOI: 10.1186/s40478-023-01638-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023] Open
Abstract
Cerebrovascular pathologies other than frank infarctions are commonly seen in aged brains. Here, we focus on multi-lumen vascular profiles (MVPs), which are characterized by multiple vessel lumens enclosed in a single vascular channel. Little information exists on the prevalence, risk factors, and co-pathologies of MVPs. Therefore, we used samples and data from the University of Kentucky Alzheimer's Disease Research Center (n = 91), the University of Kentucky Pathology Department (n = 31), and the University of Pittsburgh Pathology Department (n = 4) to study MVPs. Age at death was correlated with MVP density in the frontal neocortex, Brodmann Area 9 (r = 0.51; p < 0.0001). Exploratory analyses were performed to evaluate the association between conventional vascular risk factors (e.g., hypertension, diabetes), cardiovascular diseases (e.g., heart attack, arrhythmia), and cerebrovascular disease (e.g., stroke); the only nominal association with MVP density was a self-reported history of brain trauma (Prevalence Ratio = 2.1; 95 CI 1.1-3.9, before correcting for multiple comparisons). No specific associations were detected between neuropathological (e.g., brain arteriolosclerosis) or genetic (e.g., APOE) variables and MVP density. Using a tissue clearing method called SeeDB, we provide 3-dimensional images of MVPs in brain tissue. We conclude that MVPs are an age-related brain pathology and more work is required to identify their clinical-pathological correlation and associated risk factors.
Collapse
Affiliation(s)
- Eseosa T Ighodaro
- Department of Neurology, Emory University, Atlanta, GA, USA
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Ryan K Shahidehpour
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Epidemiology and Environmental Health, University of Kentucky, Lexington, KY, 40536, USA
| | | | - David W Fardo
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Andy Y Shih
- Department of Pediatrics, Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington, Seattle, WA, 98101, USA
| | - Roger I Grant
- Department of Neurosciences and Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Janna H Neltner
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, 40536, USA
| | - Frederick A Schmitt
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - Richard J Kryscio
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Statistics, University of Kentucky, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|