1
|
Zhang W, Li S, Li C, Li T, Huang Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol 2022; 13:1051998. [PMID: 36439106 PMCID: PMC9685561 DOI: 10.3389/fimmu.2022.1051998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 09/01/2023] Open
Abstract
With cancer incidence rates continuing to increase and occurrence of resistance in drug treatment, there is a pressing demand to find safer and more effective anticancer strategy for cancer patients. Natural products, have the advantage of low toxicity and multiple action targets, are always used in the treatment of cancer prevention in early stage and cancer supplement in late stage. Tumor microenvironment is necessary for cancer cells to survive and progression, and immune activation is a vital means for the tumor microenvironment to eliminate cancer cells. A number of studies have found that various natural products could target and regulate immune cells such as T cells, macrophages, mast cells as well as inflammatory cytokines in the tumor microenvironment. Natural products tuning the tumor microenvironment via various mechanisms to activate the immune response have immeasurable potential for cancer immunotherapy. In this review, it highlights the research findings related to natural products regulating immune responses against cancer, especially reveals the possibility of utilizing natural products to remodel the tumor microenvironment to overcome drug resistance.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
2
|
Zhao Y, Wang K, Zheng Y, Zeng X, Lim YC, Liu T. Co-delivery of Salinomycin and Curcumin for Cancer Stem Cell Treatment by Inhibition of Cell Proliferation, Cell Cycle Arrest, and Epithelial-Mesenchymal Transition. Front Chem 2021; 8:601649. [PMID: 33520933 PMCID: PMC7843432 DOI: 10.3389/fchem.2020.601649] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Malignant cancer is a devastating disease often associated with a poor clinical prognosis. For decades, modern drug discoveries have attempted to identify potential modulators that can impede tumor growth. Cancer stem cells however are more resistant to therapeutic intervention, which often leads to treatment failure and subsequent disease recurrence. Here in this study, we have developed a specific multi-target drug delivery nanoparticle system against breast cancer stem cells (BCSCs). Therapeutic agents curcumin and salinomycin have complementary functions of limiting therapeutic resistance and eliciting cellular death, respectively. By conjugation of CD44 cell-surface glycoprotein with poly(lactic-co-glycolic acid) (PLGA) nanoparticles that are loaded with curcumin and salinomycin, we investigated the cellular uptake of BCSCs, drug release, and therapeutic efficacy against BCSCs. We determined CD44-targeting co-delivery nanoparticles are highly efficacious against BCSCs by inducing G1 cell cycle arrest and limiting epithelial–mesenchymal transition. This curcumin and salinomycin co-delivery system can be an efficient treatment approach to target malignant cancer without the repercussion of disease recurrence.
Collapse
Affiliation(s)
- Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Yuanlin Zheng
- School of Pharmacy, Nantong University, Nantong, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, Nantong, China
| | - Yi Chieh Lim
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
3
|
An overview of structure-activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents. Future Med Chem 2017; 9:605-626. [PMID: 28394628 DOI: 10.4155/fmc-2016-0223] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.
Collapse
|
4
|
Ooko E, Kadioglu O, Greten HJ, Efferth T. Pharmacogenomic Characterization and Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin-Two Main Metabolites of Curcuma longa-in Cancer Cells. Front Pharmacol 2017; 8:38. [PMID: 28210221 PMCID: PMC5288649 DOI: 10.3389/fphar.2017.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022] Open
Abstract
Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa. This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53+/+ and HCT116p53−/− colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription (TFAM, TCERG1, RGS13, C11orf31), apoptosis-regulation (CRADD, CDK7, CDK19, CD81, TOM1) signal transduction (NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27) DNA repair (TOPBP1, RPA2), mRNA metabolism (RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2), and transporter genes (ABCA1) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA.
Collapse
Affiliation(s)
- Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Henry J Greten
- Heidelberg School of Chinese MedicineHeidelberg, Germany; Abel Salazar Biomedical Sciences Institute, University of PortoPorto, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
5
|
Acar M, Muluk NB, Yigitaslan S, Cengiz BP, Shojaolsadati P, Karimkhani H, Ada S, Berkoz M, Cingi C. Can curcumin modulate allergic rhinitis in rats? J Laryngol Otol 2016; 130:1103-1109. [PMID: 27707425 DOI: 10.1017/s0022215116008999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractObjectives:This study aimed to explore the effects of curcumin on experimental allergic rhinitis in rats.Methods:Twenty-eight male Wistar albino rats were randomly divided into four groups: a control group; a group in which allergic rhinitis was induced and no treatment given; a group in which allergic rhinitis was induced followed by treatment with azelastine hydrochloride on days 21–28; and a group in which allergic rhinitis was induced followed by treatment with curcumin on days 21–28. Allergy symptoms and histopathological features of the nasal mucosa were examined.Results:The sneezing and nasal congestion scores were higher in the azelastine and curcumin treatment groups than in the control group. Histopathological examination showed focal goblet cell metaplasia on the epithelial surface in the azelastine group. In the curcumin group, there was a decrease in goblet cell metaplasia in the epithelium, decreased inflammatory cell infiltration and vascular proliferation in the lamina propria.Conclusion:Curcumin is an effective treatment for experimentally induced allergic rhinitis in rats.
Collapse
|
6
|
Molderings GJ, Haenisch B, Brettner S, Homann J, Menzen M, Dumoulin FL, Panse J, Butterfield J, Afrin LB. Pharmacological treatment options for mast cell activation disease. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:671-94. [PMID: 27132234 PMCID: PMC4903110 DOI: 10.1007/s00210-016-1247-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Mast cell activation disease (MCAD) is a term referring to a heterogeneous group of disorders characterized by aberrant release of variable subsets of mast cell (MC) mediators together with accumulation of either morphologically altered and immunohistochemically identifiable mutated MCs due to MC proliferation (systemic mastocytosis [SM] and MC leukemia [MCL]) or morphologically ordinary MCs due to decreased apoptosis (MC activation syndrome [MCAS] and well-differentiated SM). Clinical signs and symptoms in MCAD vary depending on disease subtype and result from excessive mediator release by MCs and, in aggressive forms, from organ failure related to MC infiltration. In most cases, treatment of MCAD is directed primarily at controlling the symptoms associated with MC mediator release. In advanced forms, such as aggressive SM and MCL, agents targeting MC proliferation such as kinase inhibitors may be provided. Targeted therapies aimed at blocking mutant protein variants and/or downstream signaling pathways are currently being developed. Other targets, such as specific surface antigens expressed on neoplastic MCs, might be considered for the development of future therapies. Since clinicians are often underprepared to evaluate, diagnose, and effectively treat this clinically heterogeneous disease, we seek to familiarize clinicians with MCAD and review current and future treatment approaches.
Collapse
Affiliation(s)
- Gerhard J Molderings
- Institute of Human Genetics, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Brettner
- Department of Oncology, Hematology and Palliative Care, Kreiskrankenhaus Waldbröl, Waldbröl, Germany
| | - Jürgen Homann
- Allgemeine Innere Medizin, Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus, Bonn, Germany
| | - Markus Menzen
- Allgemeine Innere Medizin, Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus, Bonn, Germany
| | - Franz Ludwig Dumoulin
- Allgemeine Innere Medizin, Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus, Bonn, Germany
| | - Jens Panse
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joseph Butterfield
- Program for the Study of Mast Cell and Eosinophil Disorders, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lawrence B Afrin
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
7
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
8
|
Evaluation on potential contributions of protease activated receptors related mediators in allergic inflammation. Mediators Inflamm 2014; 2014:829068. [PMID: 24876677 PMCID: PMC4021743 DOI: 10.1155/2014/829068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/20/2014] [Indexed: 01/16/2023] Open
Abstract
Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy.
Collapse
|
9
|
Wang Z, Chen D, Zhang Z, Zhang R, An S, Yu L. Protease-activated receptor 4 activation increases the expression of calcitonin gene-related peptide mRNA and protein in dorsal root ganglion neurons. J Neurosci Res 2013; 91:1551-62. [PMID: 24105611 DOI: 10.1002/jnr.23280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022]
Abstract
Accumulating evidence demonstrates that nociceptor activation evokes a rapid change in mRNA and protein levels of calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons. Although the colocalization of CGRP and protease-activated receptor-4 (PAR4), a potent modulator of pain processing and inflammation, was detected in DRG neurons, the role of PAR4 activation in the expression of CGRP has not been investigated. In the present study, the expression of CGRP and activation (phosphorylation) of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in rat DRG neurons were measured by immunofluorescence, real-time PCR, and Western blotting after AYPGKF-NH2 (selective PAR4-activating peptide; PAR4-AP) intraplantar injection or treatment of cultured DRG neurons. The expression of CGRP in cultured DRG neurons was also assessed after treatment with AYPGKF-NH2 with preaddition of PD98059 (an inhibitor for ERK1/2 pathway). Results showed that PAR4-AP intraplantar injection or treatment of cultured DRG neurons evoked significant increases in DRG cells displaying CGRP immunoreactivity and cytoplasmic and nuclear staining for phospho-ERK1/2 (p-ERK1/2). Percentages of total DRG neurons expressing both CGRP and PAR4 or p-ERK1/2 also increased significantly at 2 hr after PAR4-AP treatment. Real-time PCR and Western blotting showed that PAR4-AP treatment significantly increased expression of CGRP mRNA and protein levels in DRG neurons. The PAR4 activation-evoked CGRP expression both at mRNA and at protein levels was significantly inhibited after p-ERK1/2 was inhibited by PD98059. These results provide evidence that activation of PAR4 upregulates the expression of CGRP mRNA and protein levels in DRG neurons via the p-ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Zhaojin Wang
- Department of Anatomy, Taishan Medical University, Shandong Province, Taian, China
| | | | | | | | | | | |
Collapse
|
10
|
Christerson U, Keita AV, Söderholm JD, Gustafson-Svärd C. Increased expression of protease-activated receptor-2 in mucosal mast cells in Crohn's ileitis. J Crohns Colitis 2009; 3:100-8. [PMID: 21172252 DOI: 10.1016/j.crohns.2008.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Activation of protease-activated receptor-2 (PAR-2) may stimulate various events of importance in inflammatory processes, including release of inflammatory mast cell mediators. PAR-2 is frequently up-regulated during inflammatory conditions, but it is not known if the expression is altered in Crohn's disease. The aim of the present study was to investigate the ileal mucosal PAR-2 expression in Crohn's ileitis, with particular emphasis on the expression in ileal mucosal mast cells. METHODS Surgical specimens from the distal ileum were collected from patients with Crohn's ileitis and patients with colonic cancer as controls. The overall expression of PAR-2 was investigated by Western blot, and the presence of PAR-2 expressing mucosal mast cells by immunohistochemistry and cell counting. The effect of tumor necrosis factor-α (TNF-α) on the PAR-2 expression in a human mast cell line (HMC-1) was investigated by RT-PCR and immunocytochemistry. RESULTS In Crohn's specimens, the fraction of PAR-2-expressing mucosal mast cells was increased about 2.5 times (P<0.001; n=14) compared with specimens from control patients (n=6). No difference was found between inflamed (n=6) and uninflamed Crohn's specimens (P>0.05; n=8). Exposure to TNF-α for 48 h up-regulated PAR-2 mRNA and protein expression in the HMC-1 cell line. CONCLUSION PAR-2 is up-regulated on ileal mucosal mast cells in Crohn's ileitis, possibly due to the action of inflammatory cytokines, such as TNF-α. This may contribute to perpetuating the inflammatory process in the intestinal mucosa in Crohn's ileitis.
Collapse
Affiliation(s)
- Ulrika Christerson
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | | | | | |
Collapse
|
11
|
Kim SJ, Son TG, Park HR, Park M, Kim MS, Kim HS, Chung HY, Mattson MP, Lee J. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 2008; 283:14497-505. [PMID: 18362141 DOI: 10.1074/jbc.m708373200] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Curcumin is a natural phenolic component of yellow curry spice, which is used in some cultures for the treatment of diseases associated with oxidative stress and inflammation. Curcumin has been reported to be capable of preventing the death of neurons in animal models of neurodegenerative disorders, but its possible effects on developmental and adult neuroplasticity are unknown. In the present study, we investigated the effects of curcumin on mouse multi-potent neural progenitor cells (NPC) and adult hippocampal neurogenesis. Curcumin exerted biphasic effects on cultured NPC; low concentrations stimulated cell proliferation, whereas high concentrations were cytotoxic. Curcumin activated extracellular signal-regulated kinases (ERKs) and p38 kinases, cellular signal transduction pathways known to be involved in the regulation of neuronal plasticity and stress responses. Inhibitors of ERKs and p38 kinases effectively blocked the mitogenic effect of curcumin in NPC. Administration of curcumin to adult mice resulted in a significant increase in the number of newly generated cells in the dentate gyrus of hippocampus, indicating that curcumin enhances adult hippocampal neurogenesis. Our findings suggest that curcumin can stimulate developmental and adult hippocampal neurogenesis, and a biological activity that may enhance neural plasticity and repair.
Collapse
Affiliation(s)
- So Jung Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Longevity Life Science and Technology Institutes, Pusan National University, Geumjeong-Gu, Busan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shpacovitch V, Feld M, Bunnett NW, Steinhoff M. Protease-activated receptors: novel PARtners in innate immunity. Trends Immunol 2007; 28:541-50. [PMID: 17977790 DOI: 10.1016/j.it.2007.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/08/2007] [Accepted: 09/19/2007] [Indexed: 11/17/2022]
Abstract
Protease-activated receptors (PARs) belong to a family of G protein-coupled receptors activated by serine proteases via proteolytic cleavage. PARs are expressed on epithelial cells, endothelial cells, and leukocytes, indicating a role in controlling barrier function against external danger. During inflammation, microorganisms as well as host immune cells release various proteases activating PARs. Thus, PARs can be viewed as an integral component of the host antimicrobial alarm system. When stimulated, PARs regulate various functions of leukocytes in vivo and in vitro, revealing a novel pathway by which proteases affect innate immune responses. Understanding protease-immune interactions could lead to novel strategies for the treatment of infectious and immune-related diseases.
Collapse
Affiliation(s)
- V Shpacovitch
- Department of Dermatology and Ludwig Boltzmann Institute for Cell Biology of the Skin, University of Münster, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
13
|
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. CURCUMIN: THE INDIAN SOLID GOLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:1-75. [PMID: 17569205 DOI: 10.1007/978-0-387-46401-5_1] [Citation(s) in RCA: 842] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antifungal Agents/chemistry
- Antifungal Agents/pharmacology
- Antifungal Agents/therapeutic use
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/chemistry
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Curcuma/chemistry
- Curcumin/analogs & derivatives
- Curcumin/chemistry
- Curcumin/metabolism
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Humans
- India
- Medicine, Ayurvedic
- Models, Biological
- Molecular Structure
- Neoplasms/drug therapy
- Phytotherapy
- Plants, Medicinal
- Spices
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
14
|
Kang OH, Choi YA, Park HJ, Kang CS, Song BS, Choi SC, Nah YH, Yun KJ, Cai XF, Kim YH, Bae KH, Lee YM. Inhibition of trypsin-induced mast cell activation by acanthoic acid. JOURNAL OF ETHNOPHARMACOLOGY 2006; 105:326-31. [PMID: 16414226 DOI: 10.1016/j.jep.2005.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 09/28/2005] [Accepted: 10/27/2005] [Indexed: 05/06/2023]
Abstract
Acanthoic acid (AA) is a pimaradiene diterpene isolated from the Korean medicinal plant, Acanthopanax koreanum (Araliaceae). In the present study, we examined whether AA has the inhibitory effect on the production of inflammatory mediators and activating signals induced in trypsin-treated human leukemic mast cell-1 (HMC-1). HMC-1 cells were stimulated with trypsin (100 nM) in the presence or absence of AA (1, 10, and 100 microg/ml). We assessed the production of TNF-alpha and tryptase by enzyme-linked immunosorbent assay (ELISA) or reverse transcription-PCR, ERK activation by Western blot, and NF-kappaB activation by gel shift assay. AA (10 and 100 microg/ml) significantly inhibited production of both TNF-alpha and tryptase in a dose-dependent manner in trypsin-stimulated HMC-1. Furthermore, AA inhibited ERK phosphorylation and NF-kappaB activation induced by trypsin treatment without blocking of trypsin activity even with 100 microg/ml. These results suggest that AA may inhibit the production of inflammatory mediators through inhibition of ERK phosphorylation and NF-kappaB activation pathway in human mast cells. It supports the evidence that AA may be used to blocks the development of inflammation caused from mast cells.
Collapse
Affiliation(s)
- Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 570-749, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chu AJ. Tissue factor mediates inflammation. Arch Biochem Biophys 2005; 440:123-32. [PMID: 16036212 DOI: 10.1016/j.abb.2005.06.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 06/10/2005] [Indexed: 02/06/2023]
Abstract
The role of tissue factor (TF) in inflammation is mediated by blood coagulation. TF initiates the extrinsic blood coagulation that proceeds as an extracellular signaling cascade by a series of active serine proteases: FVIIa, FXa, and thrombin (FIIa) for fibrin clot production in the presence of phospholipids and Ca2+. TF upregulation resulting from its enhanced exposure to clotting factor FVII/FVIIa often manifests not only hypercoagulable but also inflammatory state. Coagulant mediators (FVIIa, FXa, and FIIa) are proinflammatory, which are largely transmitted by protease-activated receptors (PAR) to elicit inflammation including the expression of tissue necrosis factor, interleukins, adhesion molecules (MCP-1, ICAM-1, VCAM-1, selectins, etc.), and growth factors (VEGF, PDGF, bFGF, etc.). In addition, fibrin, and its fragments are also able to promote inflammation. In the event of TF hypercoagulability accompanied by the elevations in clotting signals including fibrin overproduction, the inflammatory consequence could be enormous. Antagonism to coagulation-dependent inflammation includes (1) TF downregulation, (2) anti-coagulation, and (3) PAR blockade. TF downregulation and anti-coagulation prevent and limit the proceeding of coagulation cascade in the generation of proinflammatory coagulant signals, while PAR antagonists block the transmission of such signals. These approaches are of significance in interrupting the coagulation-inflammation cycle in contribution to not only anti-inflammation but also anti-thrombosis for cardioprotection.
Collapse
Affiliation(s)
- Arthur J Chu
- MRC, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
16
|
Frungieri MB, Albrecht M, Raemsch R, Mayerhofer A. The action of the mast cell product tryptase on cyclooxygenase-2 (COX2) and subsequent fibroblast proliferation involves activation of the extracellular signal-regulated kinase isoforms 1 and 2 (erk1/2). Cell Signal 2005; 17:525-33. [PMID: 15601629 DOI: 10.1016/j.cellsig.2004.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/17/2004] [Accepted: 09/20/2004] [Indexed: 12/28/2022]
Abstract
The mast cell product tryptase, via protease-activated receptor 2 (PAR2), induces cyclooxygenase-2 (COX2) and 15-deoxy-prostaglandin J2 (15d-PGJ2) synthesis. 15d-PGJ2, through the nuclear peroxisome proliferator activated receptor gamma (PPARgamma), subsequently causes fibroblast proliferation. In this study we attempted to determine initial events of the tryptase/PAR2 signaling pathway leading to COX2 induction and fibroblast proliferation. In human fibroblasts (HFFF2), cDNA array, RT-PCR and Western blotting studies demonstrated that tryptase, but not 15d-PGJ2, up-regulates c-jun, c-fos and COX2 expression, and phosphorylates the extracellular signal-regulated kinase isoforms 1 and 2 (erk1/2). Furthermore, tryptase effects on erk1/2, c-jun, c-fos, COX2 and cell proliferation were prevented by PD98059, an inhibitor of the mitogen-activated protein kinase kinase (MEK). Other kinases [P38, stress-activated protein kinase/c-jun N-terminal kinase (SAPK/JUNK), erk5], intracellular Ca(2+) or cAMP were not affected by tryptase/PAR2. Our study identifies crucial intracellular events leading to induction of COX2 and fibroblast proliferation, i.e. a cornerstone of fibrosis.
Collapse
Affiliation(s)
- Mónica B Frungieri
- Anatomical Institute, Ludwig Maximilians University, D-80802 Munich, Germany.
| | | | | | | |
Collapse
|