1
|
Fayazfar H, Afshar A, Dolati M, Dolati A. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode. Anal Chim Acta 2014; 836:34-44. [DOI: 10.1016/j.aca.2014.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/06/2014] [Accepted: 05/16/2014] [Indexed: 01/28/2023]
|
2
|
Ermini ML, Mariani S, Scarano S, Minunni M. Bioanalytical approaches for the detection of single nucleotide polymorphisms by Surface Plasmon Resonance biosensors. Biosens Bioelectron 2014; 61:28-37. [PMID: 24841091 DOI: 10.1016/j.bios.2014.04.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
The mapping of specific single nucleotide polymorphisms (SNPs) in patients' genome is a main goal in theranostics, aiming to the development of therapies based on personalized medicine. In this review, Surface Plasmon Resonance (SPR) and Surface Plasmon Resonance imaging (SPRi) biosensors applied to the recognition of SNPs were reviewed, since these technologies are emerging in clinical diagnosis as powerful tools thanks to their analytical features, mainly the real-time and label-free monitoring based on array format for parallel analysis. Since the literature is heterogeneous, a critical classification and a systemic comparison of the analytical performances of published methods were here reviewed on the basis of the analytical strategy and the assay design. In particular, the use of helping agents (i.e. proteins, nanoparticles (NPs), intercalating agents) or artificial DNAs, often coupled to SPR to achieve allele discrimination and/or enhanced sensitivity, were here revised and classified. Finally, the real suitability of SPR biosensors to clinical diagnostics for SNPs detection was addressed by comparing their features and performances with those of other biosensors based on other techniques (e.g. electrochemical biosensors).
Collapse
Affiliation(s)
- Maria Laura Ermini
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Mariani
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Simona Scarano
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Minunni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
3
|
Wang X, Wang X, Wang X, Chen F, Zhu K, Xu Q, Tang M. Novel electrochemical biosensor based on functional composite nanofibers for sensitive detection of p53 tumor suppressor gene. Anal Chim Acta 2012; 765:63-9. [PMID: 23410627 DOI: 10.1016/j.aca.2012.12.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 01/10/2023]
Abstract
A novel electrochemical biosensor based on functional composite nanofibers for sensitive hybridization detection of p53 tumor suppressor using methylene blue (MB) as an electrochemical indicator is developed. The carboxylated multi-walled carbon nanotubes (MWNTs) doped nylon 6 (PA6) composite nanofibers (MWNTs-PA6) was prepared using electrospinning, which served as the nanosized backbone for pyrrole (Py) electropolymerization. The functional composite nanofibers (MWNTs-PA6-PPy) used as supporting scaffolds for ssDNA immobilization can dramatically increase the amount of DNA attachment and the hybridization sensitivity. The biosensor displayed good sensitivity and specificity. The target wild type p53 sequence (wtp53) can be detected as low as 50 fM and the discrimination is up to 57.5% between the wtp53 and the mutant type p53 sequence (mtp53). It holds promise for the early diagnosis of cancer development and monitoring of patient therapy.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | | | | | | | | | | | | |
Collapse
|
4
|
Farjami E, Clima L, Gothelf K, Ferapontova EE. "Off-on" electrochemical hairpin-DNA-based genosensor for cancer diagnostics. Anal Chem 2011; 83:1594-602. [PMID: 21314139 DOI: 10.1021/ac1032929] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple and robust "off-on" signaling genosensor platform with improved selectivity for single-nucleotide polymorphism (SNP) detection based on the electronic DNA hairpin molecular beacons has been developed. The DNA beacons were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 3'-end, while the 5'-end was labeled with a methylene blue (MB) redox probe. A typical "on-off" change of the electrochemical signal was observed upon hybridization of the 27-33 nucleotide (nt) long hairpin DNA to the target DNA, in agreement with all the hitherto published data. Truncation of the DNA hairpin beacons down to 20 nts provided improved genosensor selectivity for SNP and allowed switching of the electrochemical genosensor response from the on-off to the off-on mode. Switching was consistent with the variation in the mechanism of the electron transfer reaction between the electrode and the MB redox label, for the folded beacon being characteristic of the electrochemistry of adsorbed species, while for the "open" duplex structure being formally controlled by the diffusion of the redox label within the adsorbate layer. The relative current intensities of both processes were governed by the length of the formed DNA duplex, potential scan rate, and apparent diffusion coefficient of the redox species. The off-on genosensor design used for detection of a cancer biomarker TP53 gene sequence favored discrimination between the healthy and SNP-containing DNA sequences, which was particularly pronounced at short hybridization times.
Collapse
Affiliation(s)
- Elaheh Farjami
- Danish National Research Foundation: Center for DNA Nanotechnology, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
5
|
Belluzo MS, Ribone ME, Lagier CM. Assembling Amperometric Biosensors for Clinical Diagnostics. SENSORS (BASEL, SWITZERLAND) 2008; 8:1366-1399. [PMID: 27879771 PMCID: PMC3663002 DOI: 10.3390/s8031366] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/14/2008] [Indexed: 11/17/2022]
Abstract
Clinical diagnosis and disease prevention routinely require the assessment ofspecies determined by chemical analysis. Biosensor technology offers several benefits overconventional diagnostic analysis. They include simplicity of use, specificity for the targetanalyte, speed to arise to a result, capability for continuous monitoring and multiplexing,together with the potentiality of coupling to low-cost, portable instrumentation. This workfocuses on the basic lines of decisions when designing electron-transfer-based biosensorsfor clinical analysis, with emphasis on the strategies currently used to improve the deviceperformance, the present status of amperometric electrodes for biomedicine, and the trendsand challenges envisaged for the near future.
Collapse
Affiliation(s)
- María Soledad Belluzo
- Analytical Chemistry Department, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario -2000, Argentina
| | - María Elida Ribone
- Analytical Chemistry Department, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario -2000, Argentina
| | - Claudia Marina Lagier
- Analytical Chemistry Department, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario -2000, Argentina.
| |
Collapse
|
6
|
Peltonen J, Welsh JA, Vähäkangas KH. Is there a role for PCR-SSCP among the methods for missense mutation detection of TP53 gene? Hum Exp Toxicol 2007; 26:9-18. [PMID: 17334176 DOI: 10.1177/0960327107071918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutation analysis methods have increased in variety during the past years. High-throughput microarray methods have especially increased in popularity. However, new methods require reference points, and not all of the methods are equal in sensitivity and specificity. Furthermore, the detection of unknown missense mutations, such as unknown TP53 mutations in human tumors, for clinical purposes requires great accuracy, which may be difficult to acquire with the current high-throughput methods. For these reasons, the classical methods, such as PCR-manual sequencing and PCR-SSCP, are still valuable and necessary.
Collapse
Affiliation(s)
- J Peltonen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
7
|
Kringen P, Bergamaschi A, Due EU, Wang Y, Tagliabue E, Nesland JM, Nehman A, Tönisson N, Børresen-Dale AL. Evaluation of arrayed primer extension for TP53 mutation detection in breast and ovarian carcinomas. Biotechniques 2006; 39:755-61. [PMID: 16312222 DOI: 10.2144/000112000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mutations in the tumor suppressor gene TP53 are associated with a wide range of different cancers and may have prognostic and therapeutic implications. Methods for rapid and sensitive detection of mutations in this gene are therefore required. In order to make screening more effective, a commercially available TP53 genotyping microarray from Asper Biotech has been constructed by arrayed primer extension (APEX). The present study is the first report that blindly evaluates the efficiency of the second generation APEX TP53 genotype chip outside the Asper laboratory and compares it to temporal temperature gradient electrophoresis (TTGE) and sequencing of TP53 for mutation detection in ovarian and breast cancer samples. All nucleotides in the TP53 gene from exon 2-9 are included on the chip by synthesis and application of sequence-specific oligonucleotides. The chip was validated by screening 48 breast and 11 ovarian cancer cases, all of which had previously been analyzed by TTGE and sequencing. APEX scored 17 of 20 sequence variants, missing one deletion, one insertion, and a missense mutation. Resequencing efficiency using APEX was 92% for both DNA strands and 99.5% for sense and/or antisense strand. We conclude that the APEX TP53 microarray is a robust, rapid, and comprehensive screening tool for sequence alterations in tumors.
Collapse
|
8
|
Dell'Atti D, Tombelli S, Minunni M, Mascini M. Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosens Bioelectron 2006; 21:1876-9. [PMID: 16388945 DOI: 10.1016/j.bios.2005.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Piezoelectric sensing is here applied to point mutation detection in human DNA. The mutation investigated is in the TP53 gene, which results inactivated in most cancer types. TP53 gene maps on chromosome 17 (17p13.1). It contains 11 exons and codifies for the relative protein, involved in cell proliferation. The TP53 gene has a wide mutation spectrum that is related to different tumours. In particular, those occurring in the structurally important L2 and L3 zinc-binding domains, have been linked to patient prognosis and more strongly to radiotherapy and chemotherapy resistance in several major cancers. For this reason, the identification of these mutations represents an important clinical target and biosensors could represent good candidate for fast mutation screening. In this paper, a DNA-based piezoelectric biosensor for the detection of the TP53 gene mutation at codon 248 is reported. A biotinylated probe was immobilised on the sensor surface via dextran-streptavidin modified surfaces. The sensor was optimised using synthetic oligonucleotides. Finally, the sensor system was successfully applied to polymerase chain reaction (PCR)-amplified real samples of DNA extracted from two cell lines, one normal (wild-type) and one mutated, carrying the mutation at codon 248 of the TP53 gene. The results obtained demonstrate that the DNA-based piezoelectric biosensor is able to detect the point mutations in PCR-amplified samples showing the potentialities of this approach for routine analysis.
Collapse
Affiliation(s)
- Daniela Dell'Atti
- Dipartimento di Chimica, Università degli Studi di Firenze, Polo Scientifico - Via della Lastruccia 3, Sesto Fiorentino - Firenze 50019, Italy
| | | | | | | |
Collapse
|
9
|
Jiang T, Minunni M, Wilson P, Zhang J, Turner APF, Mascini M. Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor. Biosens Bioelectron 2005; 20:1939-45. [PMID: 15741061 DOI: 10.1016/j.bios.2004.08.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 08/25/2004] [Accepted: 08/26/2004] [Indexed: 12/01/2022]
Abstract
A DNA-based surface plasmon resonance (SPR) biosensor has been developed for the detection of TP53 mutation using the inexpensive and commercially available instrument, SPREETA SPR-EVM-BT, from Texas Instruments. A direct immobilisation procedure, based on the coupling of thiol-derivatised oligonucleotide probes (Probe-C6-SH) to bare gold sensor surfaces, was optimized using synthetic oligonucleotides. Hybridisation reactions between the immobilised probe and a short sequence (26 mer) complementary, non-complementary and one-point mutation DNA were then investigated. The main analytical parameters of the sensor system were studied in detail including selectivity, sensitivity, reproducibility and analysis time. Finally, the sensor system was successfully applied to polymerase chain reaction (PCR)-amplified real samples, DNA extracted from both normal, wild-type, (Jurkat) and mutated (Molt 4), carrying the mutation at codon 248 of the TP53 cell lines. The results obtained demonstrate that the DNA-based SPR biosensor was able to distinguish sequences present in the various samples that differ only by one base; and hence, it appears to be a strong candidate technique for the detection of gene mutation.
Collapse
Affiliation(s)
- Tieshan Jiang
- Life Science College, Hunan Normal University, Changsha 410081, Hunan, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|