1
|
Pontini L, Marinozzi M. Shedding light on the roles of liver X receptors in cancer by using chemical probes. Br J Pharmacol 2020; 178:3261-3276. [PMID: 32673401 DOI: 10.1111/bph.15200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptors, liver X receptor-α (LXRα; NR1H3) and liver X receptor-β (LXRβ; NR1H2), are considered master regulators of lipid homeostasis. During the last couple of decades, their pivotal roles in several physiological and pathological processes ranging from energy supply, immunity, cardiovascular, neurodegenerative disorders and cancer have been highlighted. In this review, the main results achieved during more recent years about our understanding of the LXR involvement in cancer has been mainly obtained using small-molecule chemical probes. Remarkably, all these probes, albeit having different structure and biological properties, have a well demonstrated anti-tumoral activity arising from LXR modulation, indicating a high potential of LXR targeting for the treatment of cancer. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Carpenter KJ, Valfort AC, Steinauer N, Chatterjee A, Abuirqeba S, Majidi S, Sengupta M, Di Paolo RJ, Shornick LP, Zhang J, Flaveny CA. LXR-inverse agonism stimulates immune-mediated tumor destruction by enhancing CD8 T-cell activity in triple negative breast cancer. Sci Rep 2019; 9:19530. [PMID: 31863071 PMCID: PMC6925117 DOI: 10.1038/s41598-019-56038-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype that is untreatable with hormonal or HER2-targeted therapies and is also typically unresponsive to checkpoint-blockade immunotherapy. Within the tumor microenvironment dysregulated immune cell metabolism has emerged as a key mechanism of tumor immune-evasion. We have discovered that the Liver-X-Receptors (LXRα and LXRβ), nuclear receptors known to regulate lipid metabolism and tumor-immune interaction, are highly activated in TNBC tumor associated myeloid cells. We therefore theorized that inhibiting LXR would induce immune-mediated TNBC-tumor clearance. Here we show that pharmacological inhibition of LXR activity induces tumor destruction primarily through stimulation of CD8+ T-cell cytotoxic activity and mitochondrial metabolism. Our results imply that LXR inverse agonists may be a promising new class of TNBC immunotherapies.
Collapse
Affiliation(s)
- Katherine J Carpenter
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Aurore-Cecile Valfort
- The Center for Clinical Pharmacology, Saint Louis College of Pharmacy, Saint Louis, MO, 63110, USA
| | - Nick Steinauer
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Arindam Chatterjee
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Suomia Abuirqeba
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Shabnam Majidi
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Monideepa Sengupta
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Richard J Di Paolo
- The Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA
| | - Laurie P Shornick
- The Department of Biology, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Jinsong Zhang
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA
| | - Colin A Flaveny
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA. .,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Lo Re O, Douet J, Buschbeck M, Fusilli C, Pazienza V, Panebianco C, Castracani CC, Mazza T, Li Volti G, Vinciguerra M. Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics 2018; 13:829-845. [PMID: 30165787 DOI: 10.1080/15592294.2018.1514239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinomas (HCCs) contain a sub-population of cancer stem cells (CSCs) that are responsible for tumor relapse, metastasis, and chemoresistance. We recently showed that loss of macroH2A1, a variant of the histone H2A and an epigenetic regulator of stem-cell function, in HCC leads to CSC-like features such as resistance to chemotherapeutic agents and growth of large and relatively undifferentiated tumors in xenograft models. These HCC cells silenced for macroH2A1 also exhibited stem-like metabolic changes consistent with enhanced glycolysis. However, there is no consensus as to the metabolic characteristics of CSCs that render them adaptable to microenvironmental changes by conveniently shifting energy production source or by acquiring intermediate metabolic phenotypes. Here, we assessed long-term proliferation, energy metabolism, and central carbon metabolism in human hepatoma HepG2 cells depleted in macroH2A1. MacroH2A1-depleted HepG2 cells were insensitive to serum exhaustion and showed two distinct, but interdependent changes in glucose and lipid metabolism in CSCs: (1) massive upregulation of acetyl-coA that is transformed into enhanced lipid content and (2) increased activation of the pentose phosphate pathway, diverting glycolytic intermediates to provide precursors for nucleotide synthesis. Integration of metabolomic analyses with RNA-Seq data revealed a critical role for the Liver X Receptor pathway, whose inhibition resulted in attenuated CSCs-like features. These findings shed light on the metabolic phenotype of epigenetically modified CSC-like hepatic cells, and highlight a potential approach for selective therapeutic targeting.
Collapse
Affiliation(s)
- Oriana Lo Re
- a Center for Translational Medicine, International Clinical Research Center , St'Anne University Hospital , Brno , Czech Republic.,b Department of Biology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| | - Julien Douet
- d Josep Carreras Leukemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol , Universitat Autònoma de Barcelona , Badalona , Spain.,e Programme of Predictive and Personalized Medicine of Cancer , Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Badalona , Spain
| | - Marcus Buschbeck
- d Josep Carreras Leukemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol , Universitat Autònoma de Barcelona , Badalona , Spain.,e Programme of Predictive and Personalized Medicine of Cancer , Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Badalona , Spain
| | - Caterina Fusilli
- c IRCCS Casa Sollievo della Sofferenza , UO of Bioinformatics , San Giovanni Rotondo , Italy
| | - Valerio Pazienza
- f Gastroenterology unit , IRCCS Casa Sollievo della Sofferenza , San Giovanni Rotondo , Italy
| | - Concetta Panebianco
- f Gastroenterology unit , IRCCS Casa Sollievo della Sofferenza , San Giovanni Rotondo , Italy
| | | | - Tommaso Mazza
- c IRCCS Casa Sollievo della Sofferenza , UO of Bioinformatics , San Giovanni Rotondo , Italy
| | - Giovanni Li Volti
- g Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | - Manlio Vinciguerra
- a Center for Translational Medicine, International Clinical Research Center , St'Anne University Hospital , Brno , Czech Republic.,h Institute for Liver and Digestive Health, Division of Medicine , University College London (UCL) , London , UK
| |
Collapse
|
4
|
El-Gendy BEDM, Goher SS, Hegazy LS, Arief MMH, Burris TP. Recent Advances in the Medicinal Chemistry of Liver X Receptors. J Med Chem 2018; 61:10935-10956. [DOI: 10.1021/acs.jmedchem.8b00045] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Bahaa El-Dien M. El-Gendy
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Shaimaa S. Goher
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Lamees S. Hegazy
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Mohamed M. H. Arief
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Thomas P. Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| |
Collapse
|
5
|
In silico identification of small molecules as novel LXR agonists for the treatment of cardiovascular disease and cancer. J Mol Model 2018; 24:57. [PMID: 29450657 DOI: 10.1007/s00894-018-3578-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/05/2018] [Indexed: 01/31/2023]
Abstract
Liver X receptor (LXR), a member of the nuclear receptor superfamily, mainly serves as a reverse cholesterol transporter in lipid metabolism. It has been demonstrated that LXR is a promising target for the treatment of cardiovascular diseases. LXR is also involved in cancer metabolism, glucose homeostasis, immunity, and various physiological processes. The antitumor function of LXR has become of great interest to researchers in recent years. However, while it is believed that activating LXR with small molecules could be a promising approach to cancer treatment, effective drugs that target LXR are yet to be reported. To find compounds that are potentially capable of activating LXR, we utilized a high-throughput screening method to search the MolMall database for suitable compounds. Seven candidates with lower GB/SA Hawkins scores than the reference ligand T0901317 were identified. Based on the results of molecular dynamics (MD) simulations, binding free energy analysis, and an analysis of the agonism mechanism, ZINC90512020 and ZINC3845032 were predicted to have high affinities for LXR and high relative stabilization, and were therefore selected as potential LXR agonists. Both of these compounds will undergo further development with a view to utilizing them for the treatment of LXR-related cardiovascular diseases or cancers.
Collapse
|
6
|
Cheng Y, Wei Z, Xie S, Peng Y, Yan Y, Qin D, Liu S, Xu Y, Li G, Zhang L. Alleviation of Toxicity Caused by Overactivation of Pparα through Pparα-Inducible miR-181a2. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:195-206. [PMID: 29246298 PMCID: PMC5645307 DOI: 10.1016/j.omtn.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
Widely varied compounds, including certain plasticizers, hypolipidemic drugs (e.g., ciprofibrate, fenofibrate, WY-14643, and clofibrate), agrochemicals, and environmental pollutants, are peroxisome proliferators (PPs). Appropriate dose of PPs causes a moderate increase in the number and size of peroxisomes and the expression of genes encoding peroxisomal lipid-metabolizing enzymes. However, high-dose PPs cause varied harmful effects. Chronic administration of PPs to mice and rats results in hepatomegaly and ultimately carcinogenesis. Nuclear receptor protein peroxisome proliferator-activated receptor-α (Pparα) was shown to be required for this process. However, biological adaptations to minimize this risk are poorly understood. In this study, we found that miR-181a2 expression was induced by the Pparα agonist WY-14643. Moreover, exogenous expression of miR-181a-5p dramatically alleviated the cell toxicity caused by overactivation of Pparα. Further studies showed that miR-181a-5p directly targeted the Pparα 3′ untranslated region and depressed the Pparα protein level. This study identified a feedback loop between miR-181a-5p and Pparα, which allows biological systems to approach a balance when Pparα is overactivated.
Collapse
Affiliation(s)
- Yanjie Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuying Wei
- The Key Laboratory of Mammalian, Reproductive Biology and Biotechnology of the Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shengsong Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - You Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Yan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghui Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanling Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangpeng Li
- The Key Laboratory of Mammalian, Reproductive Biology and Biotechnology of the Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Lisheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
8
|
Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 2017; 7:5204-25. [PMID: 26636650 PMCID: PMC4868681 DOI: 10.18632/oncotarget.6440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023] Open
Abstract
A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast.
Collapse
Affiliation(s)
| | | | - Sadaf Mohtashami
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|