1
|
Yin Q, Hu Y, Dong Z, Lu J, Wang H. Cellular, Structural Basis, and Recent Progress for Targeting Murine Double Minute X (MDMX) in Tumors. J Med Chem 2024; 67:14723-14741. [PMID: 39185935 DOI: 10.1021/acs.jmedchem.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Murine double minute X (MDMX) is an oncoprotein that mainly has a negative regulatory effect on the tumor suppressor p53 to induce tumorigenesis. As MDMX is highly expressed in various types of tumor cells, targeting and inhibiting MDMX are becoming a promising strategy for treating cancers. However, the high degree of structural homology between MDMX and its homologous protein murine double minute 2 (MDM2) is a great challenge for the development of MDMX-targeted therapies. This review introduces the structure, distribution, and regulation of the MDMX, summarizes the structural features and structure-activity relationships (SARs) of MDMX ligands, and focuses on the differences between MDMX and MDM2 in these aspects. Our purpose of this work is to propose potential strategies to achieve the specific targeting of MDMX.
Collapse
Affiliation(s)
- Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhiwen Dong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Fan W, Liu H, Stachelek GC, Begum A, Davis CE, Dorado TE, Ernst G, Reinhold WC, Ozbek B, Zheng Q, De Marzo AM, Rajeshkumar NV, Barrow JC, Laiho M. Ribosomal RNA transcription governs splicing through ribosomal protein RPL22. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608201. [PMID: 39211199 PMCID: PMC11361076 DOI: 10.1101/2024.08.15.608201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ribosome biosynthesis is a cancer vulnerability executed by targeting RNA polymerase I (Pol I) transcription. We developed advanced, specific Pol I inhibitors to identify drivers of this sensitivity. By integrating multi-omics features and drug sensitivity data from a large cancer cell panel, we discovered that RPL22 frameshift mutation conferred Pol I inhibitor sensitivity in microsatellite instable cancers. Mechanistically, RPL22 directly interacts with 28S rRNA and mRNA splice junctions, functioning as a splicing regulator. RPL22 deficiency, intensified by 28S rRNA sequestration, promoted the splicing of its paralog RPL22L1 and p53 negative regulator MDM4. Chemical and genetic inhibition of rRNA synthesis broadly remodeled mRNA splicing controlling hundreds of targets. Strikingly, RPL22-dependent alternative splicing was reversed by Pol I inhibition revealing a ribotoxic stress-initiated tumor suppressive pathway. We identify a mechanism that robustly connects rRNA synthesis activity to splicing and reveals their coordination by ribosomal protein RPL22.
Collapse
|
3
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Malamut G, Soderquist CR, Bhagat G, Cerf-Bensussan N. Advances in Nonresponsive and Refractory Celiac Disease. Gastroenterology 2024; 167:132-147. [PMID: 38556189 DOI: 10.1053/j.gastro.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
Nonresponsive celiac disease (CeD) is relatively common. It is generally attributed to persistent gluten exposure and resolves after correction of diet errors. However, other complications of CeD and disorders clinically mimicking CeD need to be excluded. Novel therapies are being evaluated to facilitate mucosal recovery, which might benefit patients with nonresponsive CeD. Refractory CeD (RCeD) is rare and is divided into 2 types. The etiology of type I RCeD is unclear. A switch to gluten-independent autoimmunity is suspected in some patients. In contrast, type II RCeD represents a low-grade intraepithelial lymphoma. Type I RCeD remains a diagnosis of exclusion, requiring ruling out gluten intake and other nonmalignant causes of villous atrophy. Diagnosis of type II RCeD relies on the demonstration of a clonal population of neoplastic intraepithelial lymphocytes with an atypical immunophenotype. Type I RCeD and type II RCeD generally respond to open-capsule budesonide, but the latter has a dismal prognosis due to severe malnutrition and frequent progression to enteropathy-associated T-cell lymphoma; more efficient therapy is needed.
Collapse
Affiliation(s)
- Georgia Malamut
- Department of Gastroenterology, Assistance Publique-Hôpitaux de Paris Centre-Université Paris Cité, Hôpital Cochin, Paris, France; Laboratory of Intestinal Immunity, INSERM UMR 1163-Institut Imagine, Université Paris Cité, Paris, France.
| | - Craig R Soderquist
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163-Institut Imagine, Université Paris Cité, Paris, France.
| |
Collapse
|
5
|
Fan C, Yang X, Yan L, Shi Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med 2024; 13:e6806. [PMID: 38715546 PMCID: PMC11077289 DOI: 10.1002/cam4.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Oxidative stress caused by elevated ROS, as a novel therapeutic mechanism, has been implicated in various tumors including AML. AML cells are chronically under oxidative stress, yet overreliance on ROS production makes tumor cells increasingly vulnerable to further damage. Reducing the cytotoxic effect of ROS on normal cells while killing leukemia stem cell (LSC) with high levels of reactive oxygen species is a new challenge for oxidative stress therapy in leukemia. METHODS By searching literature databases, we summarized recent relevant studies. The relationship of ROS on AML genes, signaling pathways, and transcription factors, and the correlation of ROS with AML bone marrow microenvironment and autophagy were summarized. In addition, we summarize the current status of research on ROS and AML therapeutics. Finally, we discuss the research progress on redox resistance in AML. RESULTS This review discusses the evidence showing the link between redox reactions and the progression of AML and compiles the latest research findings that will facilitate future biological studies of redox effects associated with AML treatment. CONCLUSION We believe that exploiting this unique oxidative stress property of AML cells may provide a new way to prevent relapse and drug resistance.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
6
|
Zhu Y, He J, Wei R, Liu J. Construction and experimental validation of a novel ferroptosis-related gene signature for myelodysplastic syndromes. Immun Inflamm Dis 2024; 12:e1221. [PMID: 38578040 PMCID: PMC10996383 DOI: 10.1002/iid3.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by morphological abnormalities and peripheral blood cytopenias, carrying a risk of progression to acute myeloid leukemia. Although ferroptosis is a promising target for MDS treatment, the specific roles of ferroptosis-related genes (FRGs) in MDS diagnosis have not been elucidated. METHODS MDS-related microarray data were obtained from the Gene Expression Omnibus database. A comprehensive analysis of FRG expression levels in patients with MDS and controls was conducted, followed by the use of multiple machine learning methods to establish prediction models. The predictive ability of the optimal model was evaluated using nomogram analysis and an external data set. Functional analysis was applied to explore the underlying mechanisms. The mRNA levels of the model genes were verified in MDS clinical samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The extreme gradient boosting model demonstrated the best performance, leading to the identification of a panel of six signature genes: SREBF1, PTPN6, PARP9, MAP3K11, MDM4, and EZH2. Receiver operating characteristic curves indicated that the model exhibited high accuracy in predicting MDS diagnosis, with area under the curve values of 0.989 and 0.962 for the training and validation cohorts, respectively. Functional analysis revealed significant associations between these genes and the infiltrating immune cells. The expression levels of these genes were successfully verified in MDS clinical samples. CONCLUSION Our study is the first to identify a novel model using FRGs to predict the risk of developing MDS. FRGs may be implicated in MDS pathogenesis through immune-related pathways. These findings highlight the intricate correlation between ferroptosis and MDS, offering insights that may aid in identifying potential therapeutic targets for this debilitating disorder.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun He
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Rong Wei
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Tuval A, Strandgren C, Heldin A, Palomar-Siles M, Wiman KG. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol 2024; 21:106-120. [PMID: 38102383 DOI: 10.1038/s41571-023-00842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
p53, which is encoded by the most frequently mutated gene in cancer, TP53, is an attractive target for novel cancer therapies. Despite major challenges associated with this approach, several compounds that either augment the activity of wild-type p53 or restore all, or some, of the wild-type functions to p53 mutants are currently being explored. In wild-type TP53 cancer cells, p53 function is often abrogated by overexpression of the negative regulator MDM2, and agents that disrupt p53-MDM2 binding can trigger a robust p53 response, albeit potentially with induction of p53 activity in non-malignant cells. In TP53-mutant cancer cells, compounds that promote the refolding of missense mutant p53 or the translational readthrough of nonsense mutant TP53 might elicit potent cell death. Some of these compounds have been, or are being, tested in clinical trials involving patients with various types of cancer. Nonetheless, no p53-targeting drug has so far been approved for clinical use. Advances in our understanding of p53 biology provide some clues as to the underlying reasons for the variable clinical activity of p53-restoring therapies seen thus far. In this Review, we discuss the intricate interactions between p53 and its cellular and microenvironmental contexts and factors that can influence p53's activity. We also propose several strategies for improving the clinical efficacy of these agents through the complex perspective of p53 functionality.
Collapse
Affiliation(s)
- Amos Tuval
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Angelos Heldin
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden.
| |
Collapse
|
8
|
Lin W, Yan Y, Huang Q, Zheng D. MDMX in Cancer: A Partner of p53 and a p53-Independent Effector. Biologics 2024; 18:61-78. [PMID: 38318098 PMCID: PMC10839028 DOI: 10.2147/btt.s436629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
The p53 tumor suppressor protein plays an important role in physiological and pathological processes. MDM2 and its homolog MDMX are the most important negative regulators of p53. Many studies have shown that MDMX promotes the growth of cancer cells by influencing the regulation of the downstream target gene of tumor suppressor p53. Studies have found that inhibiting the MDMX-p53 interaction can effectively restore the tumor suppressor activity of p53. MDMX has growth-promoting activities without p53 or in the presence of mutant p53. Therefore, it is extremely important to study the function of MDMX in tumorigenesis, progression and prognosis. This article mainly reviews the current research progress and mechanism on MDMX function, summarizes known MDMX inhibitors and provides new ideas for the development of more specific and effective MDMX inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Wu Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
9
|
Ueda K, Ikeda K. Cellular carcinogenesis in preleukemic conditions:drivers and defenses. Fukushima J Med Sci 2024; 70:11-24. [PMID: 37952978 PMCID: PMC10867434 DOI: 10.5387/fms.2023-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| |
Collapse
|
10
|
Li Q, Fan J, Zhou Z, Ma Z, Che Z, Wu Y, Yang X, Liang P, Li H. AID-induced CXCL12 upregulation enhances castration-resistant prostate cancer cell metastasis by stabilizing β-catenin expression. iScience 2023; 26:108523. [PMID: 38162032 PMCID: PMC10755053 DOI: 10.1016/j.isci.2023.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant diseases of urinary system and has poor prognosis after progression to castration-resistant prostate cancer (CRPC), and increased cytosine methylation heterogeneity is associated with the more aggressive phenotype of PCa cell line. Activation-induced cytidine deaminase (AID) is a multifunctional enzyme and contributes to antibody diversification. However, the dysregulation of AID participates in the progression of multiple diseases and related with certain oncogenes through demethylation. Nevertheless, the role of AID in PCa remains elusive. We observed a significant upregulation of AID expression in PCa samples, which exhibited a negative correlation with E-cadherin expression. Furthermore, AID expression is remarkably higher in CRPC cells than that in HSPC cells, and AID induced the demethylation of CXCL12, which is required to stabilize the Wnt signaling pathway executor β-catenin and EMT procedure. Our study suggests that AID drives CRPC metastasis by demethylation and can be a potential therapeutic target for CRPC.
Collapse
Affiliation(s)
- Qi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Urology, TianYou Hospital affiliated to Wuhan University of Science & Technology, Wuhan, Hubei Province, China
| | - Jinfeng Fan
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Zhiyan Zhou
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Zhe Ma
- The First Hospital of Tsinghua University, Beijing, China
| | - Zhifei Che
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Yaoxi Wu
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Xiangli Yang
- Department of Urology, TianYou Hospital affiliated to Wuhan University of Science & Technology, Wuhan, Hubei Province, China
| | - Peiyu Liang
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
11
|
Wu Z, Zhang X, An Y, Ma K, Xue R, Ye G, Du J, Chen Z, Zhu Z, Shi G, Ding X, Wan M, Jiang B, Zhang P, Liu J, Bu P. CLMP is a tumor suppressor that determines all-trans retinoic acid response in colorectal cancer. Dev Cell 2023; 58:2684-2699.e6. [PMID: 37944525 DOI: 10.1016/j.devcel.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
CAR-like membrane protein (CLMP) is a tight junction-associated protein whose mutation is associated with congenital short bowel syndrome (CSBS), but its functions in colorectal cancer (CRC) remain unknown. Here, we demonstrate that CLMP is rarely mutated but significantly decreased in CRC patients, and its deficiency accelerates CRC tumorigenesis, growth, and resistance to all-trans retinoic acid (ATRA). Mechanistically, CLMP recruits β-catenin to cell membrane, independent of cadherin proteins. CLMP-mediated β-catenin translocation inactivates Wnt(Wingless and INT-1)/β-catenin signaling, thereby suppressing CRC tumorigenesis and growth in ApcMin/+, azoxymethane/dextran sodium sulfate (AOM/DSS), and orthotopic CRC mouse models. As a direct target of Wnt/β-catenin, cytochrome P450 hydroxylase A1 (CYP26A1)-an enzyme that degrades ATRA to a less bioactive retinoid-is upregulated by CLMP deficiency, resulting in ATRA-resistant CRC that can be reversed by administering CYP26A1 inhibitor. Collectively, our data identify the anti-CRC role of CLMP and suggest that CYP26A1 inhibitor enable to boost ATRA's therapeutic efficiency.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanxuan Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhe An
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Kaiyue Ma
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixin Xue
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoqi Ye
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Du
- Department of General Surgery, the 7(th) Medical Center, Chinese PLA General Hospital, Beijing 100700, China
| | - Zhiyong Chen
- Department of Radiation Oncology Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Zijing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guizhi Shi
- Laboratory Animal Research Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Wan
- Laboratory Animal Research Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Jinbo Liu
- Department of Colorectal Surgery of the 1(st) Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Wang YH, Lin CC, Gurashi K, Wingelhofer B, Amaral FMR, Yao CY, Hsieh HT, Liu MC, Hou HA, Chou WC, Batta K, Wiseman DH, Tien HF. Higher MDMX expression was associated with hypomethylating agent resistance and inferior survival in MDS patients, inferring it a potential therapeutic target. Leukemia 2023; 37:2507-2511. [PMID: 37919605 DOI: 10.1038/s41375-023-02044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Yu-Hung Wang
- Division of Hematology, National Taiwan University Hospital, Taipei, Taiwan
- Epigenetics Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Chien-Chin Lin
- Division of Hematology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Kristian Gurashi
- Epigenetics Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Bettina Wingelhofer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Manchester, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Manchester, UK
| | - Chi-Yuan Yao
- Division of Hematology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin Ting Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming Chih Liu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kiran Batta
- Epigenetics Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Daniel H Wiseman
- Epigenetics Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Hwei-Fang Tien
- Division of Hematology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Internal Medicine, Fra-Eastern Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
13
|
Ueda K. Review: MDMX plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Exp Hematol 2023:S0301-472X(23)00161-3. [PMID: 37086813 DOI: 10.1016/j.exphem.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Acute myeloid leukemia (AML) is a fatal disease resulting from preleukemic hematopoietic conditions including asymptomatic clonal hematopoiesis. The accumulation of genetic changes is one of the causes of leukemic transformation. However, nongenetic factors including the overexpression of specific genes also contribute to preleukemic to leukemic transition. Among them, the p53 inhibitor Murine Double Minute X (MDMX) plays crucial roles especially in leukemia initiation. MDMX is broadly overexpressed in vast majority of AML cases, including in hematopoietic stem/progenitor cell (HSPC) level. Recently, high expression of MDMX in HSPC has been shown to be associated with leukemic transformation in patients with myelodysplastic syndromes, and preclinical studies demonstrated that MDMX overexpression accelerates the transformation of preleukemic murine models, including models of clonal hematopoiesis. MDMX inhibition, through activation of cell-intrinsic p53 activity, shows antileukemic effects. However, the molecular mechanisms of MDMX in provoking leukemic transformation are complicated. Both p53-dependent and independent mechanisms are involved in the progression of the disease. This review discusses the canonical and noncanonical functions of MDMX and how these functions are involved in the maintenance, expansion, and progression to malignancy of preleukemic stem cells. Moreover, strategies on how leukemic transformation could possibly be prevented by targeting MDMX in preleukemic stem cells are discussed.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Fukushima 9601295, Japan; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
14
|
Sebert M, Gachet S, Leblanc T, Rousseau A, Bluteau O, Kim R, Ben Abdelali R, Sicre de Fontbrune F, Maillard L, Fedronie C, Murigneux V, Bellenger L, Naouar N, Quentin S, Hernandez L, Vasquez N, Da Costa M, Prata PH, Larcher L, de Tersant M, Duchmann M, Raimbault A, Trimoreau F, Fenneteau O, Cuccuini W, Gachard N, Auger N, Tueur G, Blanluet M, Gazin C, Souyri M, Langa Vives F, Mendez-Bermudez A, Lapillonne H, Lengline E, Raffoux E, Fenaux P, Adès L, Forcade E, Jubert C, Domenech C, Strullu M, Bruno B, Buchbinder N, Thomas C, Petit A, Leverger G, Michel G, Cavazzana M, Gluckman E, Bertrand Y, Boissel N, Baruchel A, Dalle JH, Clappier E, Gilson E, Deriano L, Chevret S, Sigaux F, Socié G, Stoppa-Lyonnet D, de Thé H, Antoniewski C, Bluteau D, Peffault de Latour R, Soulier J. Clonal hematopoiesis driven by chromosome 1q/MDM4 trisomy defines a canonical route toward leukemia in Fanconi anemia. Cell Stem Cell 2023; 30:153-170.e9. [PMID: 36736290 DOI: 10.1016/j.stem.2023.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Fanconi anemia (FA) patients experience chromosome instability, yielding hematopoietic stem/progenitor cell (HSPC) exhaustion and predisposition to poor-prognosis myeloid leukemia. Based on a longitudinal cohort of 335 patients, we performed clinical, genomic, and functional studies in 62 patients with clonal evolution. We found a unique pattern of somatic structural variants and mutations that shares features of BRCA-related cancers, the FA-hallmark being unbalanced, microhomology-mediated translocations driving copy-number alterations. Half the patients developed chromosome 1q gain, driving clonal hematopoiesis through MDM4 trisomy downmodulating p53 signaling later followed by secondary acute myeloid lukemia genomic alterations. Functionally, MDM4 triplication conferred greater fitness to murine and human primary FA HSPCs, rescued inflammation-mediated bone marrow failure, and drove clonal dominance in FA mouse models, while targeting MDM4 impaired leukemia cells in vitro and in vivo. Our results identify a linear route toward secondary leukemogenesis whereby early MDM4-driven downregulation of basal p53 activation plays a pivotal role, opening monitoring and therapeutic prospects.
Collapse
Affiliation(s)
- Marie Sebert
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Stéphanie Gachet
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Thierry Leblanc
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Alix Rousseau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France
| | - Olivier Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Raouf Ben Abdelali
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Flore Sicre de Fontbrune
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Loïc Maillard
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Carèle Fedronie
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Naira Naouar
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Samuel Quentin
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Lucie Hernandez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Nadia Vasquez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Mélanie Da Costa
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Pedro H Prata
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lise Larcher
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Marie de Tersant
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Matthieu Duchmann
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Anna Raimbault
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Franck Trimoreau
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | | | - Wendy Cuccuini
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Nathalie Gachard
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | - Nathalie Auger
- Département de Biologie et Pathologie Médicales, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Giulia Tueur
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Maud Blanluet
- Department of Genetics, Institut Curie, Université de Paris, INSERM U830, Paris, France
| | - Claude Gazin
- INSERM U944/CNRS UMR7212, Paris, France; Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Michèle Souyri
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM UMR S1131, Hôpital Saint Louis, Paris, France
| | | | - Aaron Mendez-Bermudez
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | | | - Etienne Lengline
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Emmanuel Raffoux
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Pierre Fenaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lionel Adès
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Edouard Forcade
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Charlotte Jubert
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Carine Domenech
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Marion Strullu
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France
| | | | - Nimrod Buchbinder
- Centre Pédiatrique de Transplantation de Cellules Souches Hématopoïétiques, CHU de Rouen, Rouen, France
| | - Caroline Thomas
- Service d'Oncologie-Hématologie et Immunologie Pédiatrique, CHU de Nantes, Nantes, France
| | - Arnaud Petit
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Guy Leverger
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Gérard Michel
- Timone Enfants Hospital, Department of Pediatric Hematology and Oncology, Aix-Marseille University, EA 3279, Marseille, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, APHP Centre, Biotherapy Clinical Investigation Center, Inserm U1416, University of Paris, Imagine Institute, Paris, France
| | - Eliane Gluckman
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Eurocord, Department of Hematology, Saint-Louis Hospital, Paris, France
| | - Yves Bertrand
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Nicolas Boissel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France
| | - André Baruchel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean-Hugues Dalle
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Sylvie Chevret
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Division of Biostatistics, Saint-Louis Hospital, APHP, Paris, France
| | - François Sigaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Gérard Socié
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM UMR-976, Saint-Louis Hospital, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | | | - Hugues de Thé
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Collège de France, Paris, France
| | - Christophe Antoniewski
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Dominique Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; EPHE, PSL University, Paris, France.
| | - Régis Peffault de Latour
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean Soulier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France.
| |
Collapse
|
15
|
Zhu G, Cai J, Zhong H. TP53 signal pathway confers potential therapy target in acute myeloid leukemia. Eur J Haematol 2023; 110:480-489. [PMID: 36692074 DOI: 10.1111/ejh.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
TP53 mutation is a frequent tumor suppressor mutation and a critical prognostic indicator across studies in many malignant tumors including hematologic malignancies. However, the role of TP53 and its correlative pathway in acute myeloid leukemia (AML) is enigmatic, which may provide possible emerging strategies with the potential to improve outcomes in AML. Accordingly, we focus not only on the TP53 mutation but also on the underlying mechanisms of the mutated TP53 signal pathway. While it is now generally accepted that TP53 mutations are widely associated with a dismal prognosis, resistance to chemotherapy, and high incidence of relapse and refractory AML. Hereby, the current therapeutics targeting TP53 mutant AML are summarized in this review. This will address emerging TP53-based therapeutic approaches, facilizing the TP53-targeted treatment options.
Collapse
Affiliation(s)
- Gelan Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Xu X, Wang J, Tong T, Zhang W, Wang J, Ma W, Wang S, Zhou D, Wu J, Jiang L, Zhao M. A self-assembled leucine polymer sensitizes leukemic stem cells to chemotherapy by inhibiting autophagy in acute myeloid leukemia. Haematologica 2022; 107:2344-2355. [PMID: 35295079 PMCID: PMC9521229 DOI: 10.3324/haematol.2021.280290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy is the primary treatment option for acute myeloid leukemia (AML), but leukemic stem cells (LSC) can survive chemotherapy for disease recurrence and refractory. Here, we found that AML cells obtained from relapsed patients had increased autophagy levels than de novo AML cells. Furthermore, doxorubicin (DOX) treatment stimulated autophagy in LSC by repressing the mTOR pathway, and pharmaceutical inhibition of autophagy rendered chemoresistant LSC sensitive to DOX treatment in MLL-AF9 induced murine AML. Moreover, we developed a self-assembled leucine polymer, which activated mTOR to inhibit autophagy in AML cells by releasing leucine. The leucine polymer loaded DOX (Leu-DOX) induced much less autophagy but more robust apoptosis in AML cells than the DOX treatment. Notably, the leucine polymer and Leu-DOX were specifically taken up by AML cells and LSC but not by normal hematopoietic cells and hematopoietic stem/progenitor cells in the bone marrow. Consequently, Leu-DOX efficiently reduced LSC and prolonged the survival of AML mice, with more limited myeloablation and tissue damage side effects than DOX treatment. Overall, we proposed that the newly developed Leu-DOX is an effective autophagy inhibitor and an ideal drug to efficiently eliminate LSC, thus serving as a revolutionary strategy to enhance the chemotherapy efficacy in AML.
Collapse
Affiliation(s)
- Xi Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong
| | - Jian Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong
| | - Tong Tong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong
| | - Wenwen Zhang
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong
| | - Jin Wang
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong
| | - Weiwei Ma
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong
| | - Dunhua Zhou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong.
| | - Linjia Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong.
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong.
| |
Collapse
|
17
|
Lama R, Xu C, Galster SL, Querol-García J, Portwood S, Mavis CK, Ruiz FM, Martin D, Wu J, Giorgi MC, Bargonetti J, Wang ES, Hernandez-Ilizaliturri FJ, Koudelka GB, Chemler SR, Muñoz IG, Wang X. Small molecule MMRi62 targets MDM4 for degradation and induces leukemic cell apoptosis regardless of p53 status. Front Oncol 2022; 12:933446. [PMID: 35992795 PMCID: PMC9389462 DOI: 10.3389/fonc.2022.933446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
MDM2 and MDM4 proteins are key negative regulators of tumor suppressor p53. MDM2 and MDM4 interact via their RING domains and form a heterodimer polyubiquitin E3 ligase essential for p53 degradation. MDM4 also forms heterodimer E3 ligases with MDM2 isoforms that lack p53-binding domains, which regulate p53 and MDM4 stability. We are working to identify small-molecule inhibitors targeting the RING domain of MDM2-MDM4 (MMRi) that can inactivate the total oncogenic activity of MDM2-MDM4 heterodimers. Here, we describe the identification and characterization of MMRi62 as an MDM4-degrader and apoptosis inducer in leukemia cells. Biochemically, in our experiments, MMRi62 bound to preformed RING domain heterodimers altered the substrate preference toward MDM4 ubiquitination and promoted MDM2-dependent MDM4 degradation in cells. This MDM4-degrader activity of MMRi62 was found to be associated with potent apoptosis induction in leukemia cells. Interestingly, MMRi62 effectively induced apoptosis in p53 mutant, multidrug-resistant leukemia cells and patient samples in addition to p53 wild-type cells. In contrast, MMRi67 as a RING heterodimer disruptor and an enzymatic inhibitor of the MDM2-MDM4 E3 complex lacked MDM4-degrader activity and failed to induce apoptosis in these cells. In summary, this study identifies MMRi62 as a novel MDM2-MDM4-targeting agent and suggests that small molecules capable of promoting MDM4 degradation may be a viable new approach to killing leukemia cells bearing non-functional p53 by apoptosis.
Collapse
Affiliation(s)
- Rati Lama
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Chao Xu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Samuel L. Galster
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Javier Querol-García
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Scott Portwood
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Cory K. Mavis
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Federico M. Ruiz
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diana Martin
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marianna C. Giorgi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jill Bargonetti
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, United States
| | - Eunice S. Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | | - Gerald B. Koudelka
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Sherry R. Chemler
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Inés G. Muñoz
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- *Correspondence: Xinjiang Wang,
| |
Collapse
|
18
|
Zhang S, Yan Z, Li Y, Gong Y, Lyu X, Lou J, Zhang D, Meng X, Zhao Y. Structure-Based Discovery of MDM2/4 Dual Inhibitors that Exert Antitumor Activities against MDM4-Overexpressing Cancer Cells. J Med Chem 2022; 65:6207-6230. [PMID: 35420431 DOI: 10.1021/acs.jmedchem.2c00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite recent clinical progress in peptide-based dual inhibitors of MDM2/4, small-molecule ones with robust antitumor activities remain challenging. To tackle this issue, 31 (YL93) was structure-based designed and synthesized, which had MDM2/4 binding Ki values of 1.1 and 642 nM, respectively. In three MDM4-overexpressing cancer cell lines harboring wild-type p53, 31 shows improved cell growth inhibition activities compared to RG7388, an MDM2-selective inhibitor in late-stage clinical trials. Mechanistic studies show that 31 increased cellular protein levels of p53 and p21 and upregulated the expression of p53-targeted genes in RKO cells with MDM4 amplification. In addition, 31 induced cell-cycle arrest and apoptosis in western blot and flow cytometry assays. Taken together, dual inhibition of MDM2/4 by 31 elicited stronger antitumor activities in vitro compared to selective MDM2 inhibitors in wild-type p53 and MDM4-overexpressing cancer cells.
Collapse
Affiliation(s)
- Shiyan Zhang
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yafang Li
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yang Gong
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Xiangjing Meng
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| |
Collapse
|
19
|
Targeting β-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 2022; 42:231097. [PMID: 35352805 PMCID: PMC9069440 DOI: 10.1042/bsr20211841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive disease of the bone marrow with a poor prognosis. Evidence suggests long established chemotherapeutic regimens used to treat AML are reaching the limits of their efficacy, necessitating the urgent development of novel targeted therapies. Canonical Wnt signalling is an evolutionary conserved cascade heavily implicated in normal developmental and disease processes in humans. For over 15 years its been known that the central mediator of this pathway, β-catenin, is dysregulated in AML promoting the emergence, maintenance, and drug resistance of leukaemia stem cells. Yet, despite this knowledge, and subsequent studies demonstrating the therapeutic potential of targeting Wnt activity in haematological cancers, β-catenin inhibitors have not yet reached the clinic. The aim of this review is to summarise the current understanding regarding the role and mechanistic dysregulation of β-catenin in AML, and assess the therapeutic merit of pharmacologically targeting this molecule, drawing on lessons from other disease contexts.
Collapse
|
20
|
Canonical Wnt: a safeguard and threat for erythropoiesis. Blood Adv 2021; 5:3726-3735. [PMID: 34516644 DOI: 10.1182/bloodadvances.2021004845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Myeloid dysplastic syndrome (MDS) reflects a preleukemic bone marrow (BM) disorder with limited treatment options and poor disease survival. As only a minority of MDS patients are eligible for curative hematopoietic stem cell transplantation, there is an urgent need to develop alternative treatment options. Chronic activation of Wnt/β-catenin has been implicated to underlie MDS formation and recently assigned to drive MDS transformation to acute myeloid leukemia. Wnt/β-catenin signaling therefore may harbor a pharmaceutical target to treat MDS and/or prevent leukemia formation. However, targeting the Wnt/β-catenin pathway will also affect healthy hematopoiesis in MDS patients. The control of Wnt/β-catenin in healthy hematopoiesis is poorly understood. Whereas Wnt/β-catenin is dispensable for steady-state erythropoiesis, its activity is essential for stress erythropoiesis in response to BM injury and anemia. Manipulation of Wnt/β-catenin signaling in MDS may therefore deregulate stress erythropoiesis and even increase anemia severity. Here, we provide a comprehensive overview of the most recent and established insights in the field to acquire more insight into the control of Wnt/β-catenin signaling in healthy and inefficient erythropoiesis as seen in MDS.
Collapse
|
21
|
Zhang S, Lou J, Li Y, Zhou F, Yan Z, Lyu X, Zhao Y. Recent Progress and Clinical Development of Inhibitors that Block MDM4/p53 Protein-Protein Interactions. J Med Chem 2021; 64:10621-10640. [PMID: 34286973 DOI: 10.1021/acs.jmedchem.1c00940] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MDM4 is a homologue of MDM2, serving cooperatively as the negative regulator of tumor suppressor p53. Under the shadow of MDM2 inhibitors, limited efforts had been put into the discovery of MDM4 modulators. Recent studies of the experimental drug ALRN-6924, a dual MDM4 and MDM2 inhibitor, suggest that concurrent inhibition of MDM4 and MDM2 might be beneficial over only MDM2 inhibition. In view of the present research progress, we summarized published inhibitors of MDM4/p53 interactions including both peptide-based compounds and small molecules. Cocrystal structures of ligand/MDM4 complexes have been examined, and their structural features were compiled and compared in order to show the molecular basis required for high MDM4 binding affinities. Representative examples of small-molecule MDM4 inhibitors were discussed, followed by clinical results of ALRN-6924, together, providing a consolidated reference for further development of MDM4 inhibitors, either dual or selective.
Collapse
Affiliation(s)
- Shiyan Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Lou
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yafang Li
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feilong Zhou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yujun Zhao
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Ueda K, Steidl U. Epigenetic Achilles' heel of AML. NATURE CANCER 2021; 2:481-483. [PMID: 35122022 DOI: 10.1038/s43018-021-00212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Koki Ueda
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Japan
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine (Oncology), Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA.
- Blood Cancer Institute, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Seton-Rogers S. MDMX drives pre-leukaemia progression. Nat Rev Cancer 2021; 21:280. [PMID: 33762752 DOI: 10.1038/s41568-021-00352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|