Qin J, Li J, Zeng H, Du F, Tang D, Tang J. Bifunctional TiO
2 Nanoflower-Induced H
4TCBPE Aggregation Enhanced Electrochemiluminescence for an Ultrasensitive Assay of Organophosphorus.
Anal Chem 2023;
95:17903-17911. [PMID:
37972093 DOI:
10.1021/acs.analchem.3c04183]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this work, the aggregation-induced emission ligand 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene (H4TCBPE) was rigidified in the Ti-O network to form novel electrochemiluminescence (ECL) emitter H4TCBPE-TiO2 nanospheres, which acted as an effective ECL emitter to construct an "on-off" ECL biosensor for ultrasensitive detection of malathion (Mal). H4TCBPE-TiO2 exhibited excellent ECL responses due to the Ti-O network that can restrict the intramolecular free motions within H4TCBPE and then reduce the nonradiative relaxation. Moreover, TiO2 can act as an ECL co-reaction accelerator to promote the generation of sulfate radical anion (SO4•-), which interacts with H4TCBPE in the Ti-O network to produce enhanced ECL response. In the presence of Mal, numerous ligated probes (probe 1 to probe 2, P1-P2) were formed and released by copper-free click nucleic acid ligation reaction, which then hybridized with hairpin probe 1 (H1)-modified H4TCBPE-TiO2-based electrode surface. The P1-P2 probes can initiate the target-assisted terminal deoxynucleoside transferase (TdTase) extended reaction to produce long tails of deoxyadenine with abundant biotin, which can load numerous streptavidin-functionalized ferrocenedicarboxylic acid polymer (SA-PFc), causing quenching of the ECL signal. Thus, the ultrasensitive ECL biosensor based on H4TCBPE-TiO2 ECL emitter and click chemistry-actuated TdTase amplification strategy presents a desirable range from 0.001 to 100 ng/mL and a detection limit low to 9.9 fg/mL. Overall, this work has paved an avenue for the development of novel ECL emitters, which has opened up new prospects for ECL biosensing.
Collapse