1
|
Hoang L, Le Thi V, Tran Thi Hong H, Nguyen Van T, Nguyen Xuan C, Nguyen Hoai N, Do Cong T, Ivanchina NV, Do Thi T, Dmitrenok PS, Kicha AA, Phan Van K, Chau Van M. Triterpene glycosides from the Vietnamese sea cucumber Holothuria edulis. Nat Prod Res 2019; 34:1061-1067. [DOI: 10.1080/14786419.2018.1548451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Le Hoang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Vien Le Thi
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Hanh Tran Thi Hong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thanh Nguyen Van
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Cuong Nguyen Xuan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Nam Nguyen Hoai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thung Do Cong
- Institute of Marine Environment and Resources, VAST, Haiphong, Vietnam
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Thao Do Thi
- Institute of Biotechnology, VAST, Hanoi, Vietnam
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Alla A. Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Kiem Phan Van
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Minh Chau Van
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
2
|
Bahrami Y, Franco CMM. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades. Mar Drugs 2016; 14:E147. [PMID: 27527190 PMCID: PMC4999908 DOI: 10.3390/md14080147] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/30/2023] Open
Abstract
Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ(7(8)) or Δ(9(11)) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Medical Biotechnology, Flinders Medical Science and Technology, School of Medicine, Flinders University, Adelaide SA 5042, Australia.
- Centre for Marine Bioproducts Development, Flinders University, Adelaide SA 5042, Australia.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran.
| | - Christopher M M Franco
- Medical Biotechnology, Flinders Medical Science and Technology, School of Medicine, Flinders University, Adelaide SA 5042, Australia.
- Centre for Marine Bioproducts Development, Flinders University, Adelaide SA 5042, Australia.
| |
Collapse
|
3
|
Purification and characterization of angiotensin converting enzyme-inhibitory peptides derived from Stichopus horrens : Stability study against the ACE and inhibition kinetics. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Kalinin VI, Avilov SA, Silchenko AS, Stonik VA. Triterpene Glycosides of Sea Cucumbers (Holothuroidea, Echinodermata) as Taxonomic Markers. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Triterpene glycosides are characteristic metabolites of sea cucumbers (Holothurioidea, Echinodermata). The majority of the glycosides belong to the holostane type {lanostane derivatives with an 18(20)-lactone}. Carbohydrate chains of these glycosides contain xylose, glucose, quinovose, 3- O-methylglucose, and, rarely, 3- O-methylxylose, 3- O-methylglucuronic acid, 3- O-methylquinovose, and 6- O-acetyl-glucose. The glycosides are specific for genera, groups of genera and even for species. The advantages and problems in the use of triterpene glycosides as taxonomic markers in the systematics of sea cucumbers are discussed.
Collapse
Affiliation(s)
- Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| |
Collapse
|
5
|
Honey-Escandón M, Arreguín-Espinosa R, Solís-Marín FA, Samyn Y. Biological and taxonomic perspective of triterpenoid glycosides of sea cucumbers of the family Holothuriidae (Echinodermata, Holothuroidea). Comp Biochem Physiol B Biochem Mol Biol 2014; 180:16-39. [PMID: 25263252 DOI: 10.1016/j.cbpb.2014.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Since the discovery of saponins in sea cucumbers, more than 150 triterpene glycosides have been described for the class Holothuroidea. The family Holothuriidae has been increasingly studied in search for these compounds. With many species awaiting recognition and formal description this family currently consists of five genera and the systematics at the species-level taxonomy is, however, not yet fully understood. We provide a bibliographic review of the triterpene glycosides that has been reported within the Holothuriidae and analyzed the relationship of certain compounds with the presence of Cuvierian tubules. We found 40 species belonging to four genera and 121 compounds. Holothurin A and B are the most common saponins for Actinopyga, Holothuria, and Pearsonothuria. The genus Bohadschia presents mainly bivittoside C and D. Actinopyga has only sulfated saponins mainly oxidized, Bohadschia non-sulfated ones mainly non-oxidized, Holothuria and Pearsonothuria contain both types of compounds, mainly oxidized. Within the genus Holothuria, the subgenus Panningothuria only has non-sulfated saponins. The presence of sulfated and non-sulfated compounds seemingly relates to the expellability or the absence of Cuvierian tubules and the temporal or permanent concealing habits of the species. Our study concludes that better insights into the systematic distribution of saponins in Holothuriidae will only be possible if the identifications of the investigated species are confirmed by a taxonomist, especially in this group wherein cryptic species and variation between life-history stages are common and yet poorly understood. Understanding of saponin distribution within the Holothuriidae would also benefit from a stabilization of triterpene glycoside nomenclature.
Collapse
Affiliation(s)
- Magali Honey-Escandón
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510 México, D. F., Mexico.
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510 México, D. F., Mexico
| | - Francisco Alonso Solís-Marín
- Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 70-350, C.P. 04510 México, D. F., Mexico
| | - Yves Samyn
- Scientific Service of Heritage, Invertebrates Collections, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| |
Collapse
|
6
|
Enzyme Hydrolysates from Stichopus horrens as a New Source for Angiotensin-Converting Enzyme Inhibitory Peptides. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:236384. [PMID: 22927875 PMCID: PMC3426244 DOI: 10.1155/2012/236384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 11/17/2022]
Abstract
Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC50 value of 0.41 mg/mL) followed by flavourzyme hydrolysate (IC50 value of 2.24 mg/mL), trypsin hydrolysate (IC50 value of 2.28 mg/mL), papain hydrolysate (IC50 value of 2.48 mg/mL), bromelain hydrolysate (IC50 value of 4.21 mg/mL), and protamex hydrolysate (IC50 value of 6.38 mg/mL). The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC50 values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits.
Collapse
|
7
|
Kim SK, Himaya SWA. Triterpene glycosides from sea cucumbers and their biological activities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:297-319. [PMID: 22361196 DOI: 10.1016/b978-0-12-416003-3.00020-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Triterpenoid glycosides are abundantly present in sea cucumbers, which are responsible for the toxicity of these echinoderms. More than 100 triterpenoid glycosides have been isolated in the past 20 years and those are grouped into four main structural categories considering their aglycone structure: 3β-hydroxyholost-9(ll)-ene aglycone skeleton, 3β-hydroxyholost-7-ene skeleton, other holostane type aglycones and nonholostane aglycone. Most of the triterpenoid glycosides are found to be possessing potential biological activities. Among the biological activities, anticancer activity and antiviral activity are the most widely studied areas. In this communication, we have presented a general view of the structural characteristics of triterpenoid glycosides and their major biological activities. The structural significance and the application limitations of triterpene glycosides are also discussed.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan, Republic of Korea.
| | | |
Collapse
|
8
|
Abstract
This review covers the isolation and structure determination of triterpenoids including squalene derivatives, protostanes, lanostanes, holostanes, cycloartanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, lupanes, oleananes, friedelanes, ursanes, hopanes, isomalabaricanes and saponins; 574 references are cited.
Collapse
|