1
|
Yang D, Yan Q, Zhu E, Lv J, He WM. Carbon–sulfur bond formation via photochemical strategies: An efficient method for the synthesis of sulfur-containing compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Ye Y, Wu X, Chu GC, Hua X, Wang J, Zheng X, Li YM. Semi-synthesis of K27-linked-mixed-triubiquitin chains through a combination of enzymatic reaction with CAACU strategy. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Lu X, He SJ, Cheng WM, Shi J. Transition-metal-catalyzed C H functionalization for late-stage modification of peptides and proteins. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
|
6
|
Cheng WM, Lu X, Shi J, Liu L. Selective modification of natural nucleophilic residues in peptides and proteins using arylpalladium complexes. Org Chem Front 2018. [DOI: 10.1039/c8qo00765a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present review outlines the recent methodologies for selective arylation of natural nucleophilic residues within unprotected peptides and proteins promoted by arylpalladium complexes, which demonstrate the advantages and potential of organometallic palladium complexes in bioconjugation.
Collapse
Affiliation(s)
- Wan-Min Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Xi Lu
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Jing Shi
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| |
Collapse
|
7
|
Jacobsen MT, Erickson PW, Kay MS. Aligator: A computational tool for optimizing total chemical synthesis of large proteins. Bioorg Med Chem 2017; 25:4946-4952. [PMID: 28651912 DOI: 10.1016/j.bmc.2017.05.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
The scope of chemical protein synthesis (CPS) continues to expand, driven primarily by advances in chemical ligation tools (e.g., reversible solubilizing groups and novel ligation chemistries). However, the design of an optimal synthesis route can be an arduous and fickle task due to the large number of theoretically possible, and in many cases problematic, synthetic strategies. In this perspective, we highlight recent CPS tool advances and then introduce a new and easy-to-use program, Aligator (Automated Ligator), for analyzing and designing the most efficient strategies for constructing large targets using CPS. As a model set, we selected the E. coli ribosomal proteins and associated factors for computational analysis. Aligator systematically scores and ranks all feasible synthetic strategies for a particular CPS target. The Aligator script methodically evaluates potential peptide segments for a target using a scoring function that includes solubility, ligation site quality, segment lengths, and number of ligations to provide a ranked list of potential synthetic strategies. We demonstrate the utility of Aligator by analyzing three recent CPS projects from our lab: TNFα (157 aa), GroES (97 aa), and DapA (312 aa). As the limits of CPS are extended, we expect that computational tools will play an increasingly important role in the efficient execution of ambitious CPS projects such as production of a mirror-image ribosome.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Patrick W Erickson
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States.
| |
Collapse
|
8
|
Tsuda S, Mochizuki M, Nishio H, Yoshiya T. Combination of Thiol-Additive-Free Native Chemical Ligation/Desulfurization and Intentional Replacement of Alanine with Cysteine. Chembiochem 2016; 17:2133-2136. [DOI: 10.1002/cbic.201600455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Saito asagi Ibaraki-shi Osaka 567-0085 Japan
| | | | - Hideki Nishio
- Peptide Institute, Inc.; Saito asagi Ibaraki-shi Osaka 567-0085 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Saito asagi Ibaraki-shi Osaka 567-0085 Japan
| |
Collapse
|
9
|
Abstract
The present review offers an overview of nonclassical (e.g., with no pre- or in situ activation of a carboxylic acid partner) approaches for the construction of amide bonds. The review aims to comprehensively discuss relevant work, which was mainly done in the field in the last 20 years. Organization of the data follows a subdivision according to substrate classes: catalytic direct formation of amides from carboxylic and amines ( section 2 ); the use of carboxylic acid surrogates ( section 3 ); and the use of amine surrogates ( section 4 ). The ligation strategies (NCL, Staudinger, KAHA, KATs, etc.) that could involve both carboxylic acid and amine surrogates are treated separately in section 5 .
Collapse
Affiliation(s)
- Renata Marcia de Figueiredo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Simon Suppo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| |
Collapse
|
10
|
Jacobsen MT, Petersen ME, Ye X, Galibert M, Lorimer GH, Aucagne V, Kay MS. A Helping Hand to Overcome Solubility Challenges in Chemical Protein Synthesis. J Am Chem Soc 2016; 138:11775-82. [PMID: 27532670 DOI: 10.1021/jacs.6b05719] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although native chemical ligation (NCL) and related chemoselective ligation approaches provide an elegant method to stitch together unprotected peptides, the handling and purification of insoluble and aggregation-prone peptides and assembly intermediates create a bottleneck to routinely preparing large proteins by completely synthetic means. In this work, we introduce a new general tool, Fmoc-Ddae-OH, N-Fmoc-1-(4,4-dimethyl-2,6-dioxocyclo-hexylidene)-3-[2-(2-aminoethoxy)ethoxy]-propan-1-ol, a heterobifunctional traceless linker for temporarily attaching highly solubilizing peptide sequences ("helping hands") onto insoluble peptides. This tool is implemented in three simple and nearly quantitative steps: (i) on-resin incorporation of the linker at a Lys residue ε-amine, (ii) Fmoc-SPPS elongation of a desired solubilizing sequence, and (iii) in-solution removal of the solubilizing sequence using mild aqueous hydrazine to cleave the Ddae linker after NCL-based assembly. Successful introduction and removal of a Lys6 helping hand is first demonstrated in two model systems (Ebola virus C20 peptide and the 70-residue ribosomal protein L31). It is then applied to the challenging chemical synthesis of the 97-residue co-chaperonin GroES, which contains a highly insoluble C-terminal segment that is rescued by a helping hand. Importantly, the Ddae linker can be cleaved in one pot following NCL or desulfurization. The purity, structure, and chaperone activity of synthetic l-GroES were validated with respect to a recombinant control. Additionally, the helping hand enabled synthesis of d-GroES, which was inactive in a heterochiral mixture with recombinant GroEL, providing additional insight into chaperone specificity. Ultimately, this simple, robust, and easy-to-use tool is expected to be broadly applicable for the synthesis of challenging peptides and proteins.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Mark E Petersen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Xiang Ye
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Mathieu Galibert
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - George H Lorimer
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| |
Collapse
|
11
|
Huang Y, Chen C, Gao S, Wang Y, Xiao H, Wang F, Tian C, Li Y. Synthesis of
l
‐ and
d
‐Ubiquitin by One‐Pot Ligation and Metal‐Free Desulfurization. Chemistry 2016; 22:7623-8. [DOI: 10.1002/chem.201600101] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Yi‐Chao Huang
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Chen‐Chen Chen
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230026 P. R. China
| | - Shuai Gao
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Ye‐Hai Wang
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Hua Xiao
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Feng Wang
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Chang‐Lin Tian
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230026 P. R. China
| | - Yi‐Ming Li
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| |
Collapse
|
12
|
Synthesis of unnatural amino acids through palladium-catalyzed C(sp3)H functionalization. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Gao XF, Du JJ, Liu Z, Guo J. Visible-Light-Induced Specific Desulfurization of Cysteinyl Peptide and Glycopeptide in Aqueous Solution. Org Lett 2016; 18:1166-9. [DOI: 10.1021/acs.orglett.6b00292] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiao-Fei Gao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jing-Jing Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
14
|
Sun XH, Yu HZ, Pei SQ, Dang ZM. Theoretical investigations on the thiol–thioester exchange steps of different thioesters. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Lu J, Tian XB, Huang W. A new strategy for synthesis of branched cyclic peptide by Asn side-chain hydrazide ligation. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Tian Y, Wang L, Shi J, Yu HZ. Desulfurization Mechanism of Cysteine in Synthesis of Polypeptides. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1501009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Sun XH, Yu HZ, Yang MM, Yang YM, Dang ZM. Relative facility of the desulfurization of amino acids and their carboxylic derivatives. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao-Hui Sun
- Department of Polymer Science and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Hai-Zhu Yu
- Department of Polymer Science and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Meng-Meng Yang
- Department of Polymer Science and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Yi-Meng Yang
- Department of Polymer Science and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Zhi-Min Dang
- Department of Polymer Science and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| |
Collapse
|
18
|
Panda SS, Jones RA, Hall CD, Katritzky AR. Applications of Chemical Ligation in Peptide Synthesis via Acyl Transfer. Top Curr Chem (Cham) 2015; 362:229-65. [PMID: 25805142 DOI: 10.1007/128_2014_608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The utility of native chemical ligation (NCL) in the solution or solid phase synthesis of peptides, cyclic peptides, glycopeptides, and neoglycoconjugates is reviewed. In addition, the mechanistic details of inter- or intra-molecular NCLs are discussed from experimental and computational points of view.
Collapse
Affiliation(s)
- Siva S Panda
- Department of Chemistry, Center for Heterocyclic Compounds, University of Florida, Gainesville, FL, 32611-7200, USA,
| | | | | | | |
Collapse
|
19
|
Wang JX, Fang GM, He Y, Qu DL, Yu M, Hong ZY, Liu L. Peptideo-Aminoanilides as Crypto-Thioesters for Protein Chemical Synthesis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Wang JX, Fang GM, He Y, Qu DL, Yu M, Hong ZY, Liu L. Peptideo-Aminoanilides as Crypto-Thioesters for Protein Chemical Synthesis. Angew Chem Int Ed Engl 2014; 54:2194-8. [DOI: 10.1002/anie.201408078] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/18/2014] [Indexed: 12/29/2022]
|
21
|
Ma J, Zeng J, Wan Q. Postligation-Desulfurization: A General Approach for Chemical Protein Synthesis. Top Curr Chem (Cham) 2014; 363:57-101. [DOI: 10.1007/128_2014_594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|