1
|
Yan J, Ma X, Liang D, Ran M, Zheng D, Chen X, Zhou S, Sun W, Shen X, Zhang H. An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer. Nat Commun 2023; 14:6905. [PMID: 37903795 PMCID: PMC10616286 DOI: 10.1038/s41467-023-42740-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Collapse
Affiliation(s)
- Jiaqi Yan
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Danna Liang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Meixin Ran
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Xiaodong Chen
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xian Shen
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hongbo Zhang
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
2
|
Chamerski K, Filipecki J, Balińska A, Jeleń P, Sitarz M. Spectroscopic characterization of calcium phosphate precipitated under human eye conditions: An in vitro study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122716. [PMID: 37062117 DOI: 10.1016/j.saa.2023.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 05/14/2023]
Abstract
Calcification is a well-known process of calcium phosphate mineralization observed in intraocular lenses. Despite the many works conducted in this field, there is no strict explanation of the mechanisms of this process. In order to better understand the phenomenon, i.e., the mechanisms and structural conditions that promote calcification, any research observations should be conducted under conditions that best reflect those of the human eye. Taking into account the specific anatomy and physicochemical conditions of the human eye, the problem under discussion becomes difficult to solve in vitro. In the present study, calcium phosphates formed under conditions similar to those in the human eye were characterized using SEM/EDS and infrared spectroscopy. Conducted study showed the formation of white spherical precipitates, which are unstable when extracted from solution. Such precipitates were characteristic of solutions containing 1.5-3.0 mM2 of solutes. Elemental analysis showed a Ca/P ratio of 1.64-1.65, which is similar to the ratio for hydroxyapatite (1.67). Chemical structure analysis revealed the presence of broad bending and stretching bands at 475-830 cm-1 and 880-1250 cm-1, respectively, which are characteristic of PO43- groups in apatite calcium phosphates. In further analysis involving numerical fitting the bands corresponding to apatitic PO43- and indicating the presence of calcium phosphates hydration were found. The results allow the selection of immersion media for further studies involving the incubation of hydrogel intraocular lenses.
Collapse
Affiliation(s)
- Kordian Chamerski
- Department of Experimental and Applied Physics, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland.
| | - Jacek Filipecki
- Department of Experimental and Applied Physics, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Agnieszka Balińska
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Piotr Jeleń
- Department of Silicate Chemistry and Macromolecular Compounds, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Maciej Sitarz
- Department of Silicate Chemistry and Macromolecular Compounds, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
3
|
Dorozhkin SV. Synthetic amorphous calcium phosphates (ACPs): preparation, structure, properties, and biomedical applications. Biomater Sci 2021; 9:7748-7798. [PMID: 34755730 DOI: 10.1039/d1bm01239h] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous calcium phosphates (ACPs) represent a metastable amorphous state of other calcium orthophosphates (abbreviated as CaPO4) possessing variable compositional but rather identical glass-like physical properties, in which there are neither translational nor orientational long-range orders of the atomic positions. In nature, ACPs of a biological origin are found in the calcified tissues of mammals, some parts of primitive organisms, as well as in the mammalian milk. Manmade ACPs can be synthesized in a laboratory by various methods including wet-chemical precipitation, in which they are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing dissolved ions of Ca2+ and PO43- in sufficient amounts. Due to the amorphous nature, all types of synthetic ACPs appear to be thermodynamically unstable and, unless stored in dry conditions or doped by stabilizers, they tend to transform spontaneously to crystalline CaPO4, mainly to ones with an apatitic structure. This intrinsic metastability of the ACPs is of a great biological relevance. In particular, the initiating role that metastable ACPs play in matrix vesicle biomineralization raises their importance from a mere laboratory curiosity to that of a reasonable key intermediate in skeletal calcifications. In addition, synthetic ACPs appear to be very promising biomaterials both for manufacturing artificial bone grafts and for dental applications. In this review, the current knowledge on the occurrence, structural design, chemical composition, preparation, properties, and biomedical applications of the synthetic ACPs have been summarized.
Collapse
|
4
|
Gelli R, Salvestrini S, Ridi F. Effect of Biologically-Relevant Molecules on the Physico-Chemical Properties of Amorphous Magnesium-Calcium Phosphate Nanoparticles. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2872-2878. [PMID: 33653453 DOI: 10.1166/jnn.2021.19049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The recently-discovered endogenous formation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in human distal small intestine occurs in a complex environment, which is rich in biologically-relevant molecules and macromolecules that can shape the properties and the stability of these inorganic particles. In this work, we selected as case studies four diverse molecules, which have different properties and are representative of intestinal luminal components, namely butyric acid, lactose, gluten and peptidoglycan. We prepared AMCPs in the presence of these four additives and we investigated their effect on the features of the particles in terms of morphology, porosity, chemical nature and incorporation/adsorption. The combined use of electron microscopy, infrared spectroscopy and thermal analysis showed that while the morphology and microstructure of the particles do not depend on the type of additive present during the synthesis, AMCPs are able to incorporate a significant amount of peptidoglycan, similarly to the process in which they are involved in vivo.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Serena Salvestrini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
5
|
Waiyawat J, Kanjana P, Kongsema M, Akkarachaneeyakorn K. Tooth desensitizing calcium phosphate composite gelatin-based gel. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520960502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dentine sensitivity is a dental problem common in individuals aged between 20 and 50 years. The most effective treatment method involves occluding the exposed dental tubules. This study focused on the synthesis of calcium phosphate nanoparticles in the form of gel to use as a proof of concept for home-treatment of sensitive teeth. In this study, calcium phosphate nanoparticles were prepared using emulsion method, in which oleic fatty acid was employed as an external phase, and sodium dodecyl sulphate (SDS) was used as a surfactant to form water-in-oil nanodroplets. Finally, in order to facilitate gel formation, the gelatin solution was introduced at the final step. The amount of gelatin varied from 5 to 15 percent by weight, which was found to have an effect on the gels’ properties and the size of calcium phosphate nanoparticles embedded in gel. Based on the characterization, the calcium phosphate nanoparticles were spherical in shape, though the size decreased as the amount of gelatin increased. The gel embedding smallest nanoparticle, that is, gel-15%G, was successfully proven to be non-toxic and able to fully occlude the dentine tubules only after overnight application. According to acid challenge, the occluded materials can resist to acid solution via redissolvation and reprecipitaion process.
Collapse
Affiliation(s)
- Jutharat Waiyawat
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pimchanok Kanjana
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Mesayamas Kongsema
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
6
|
pH-responsive calcium and phosphate-ion releasing antibacterial sealants on carious enamel lesions in vitro. J Dent 2020; 97:103323. [DOI: 10.1016/j.jdent.2020.103323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
|
7
|
(NaPO3)6-assisted formation of dispersive casein-amorphous calcium phosphate nanoparticles: An excellent platform for curcumin delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Chen C, Li Y, Yu X, Jiang Q, Xu X, Yang Q, Qian Z. Bone-targeting melphalan prodrug with tumor-microenvironment sensitivity: Synthesis, in vitro and in vivo evaluation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Ye T, Jin XY, Chen L, Hu C, Ren J, Liu YJ, Wu G, Chen LJ, Chen HZ, Li HY. Shape change of calcite single crystals to accommodate interfacial curvature: Crystallization in presence of Mg 2+ ions and agarose gel-networks. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharm 2016; 516:352-363. [PMID: 27887884 DOI: 10.1016/j.ijpharm.2016.11.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023]
Abstract
Because of the peculiarity of the bone microstructure, the uptake of chemotherapeutics often happens at non-targeted sites, which induces side effects. In order to solve this problem, we designed a bone-targeting drug delivery system that can release drug exclusively in the nidus of the bone. Alendronate (ALN), which has a high ability to target to hydroxyapatite, was used to fabricate double ALN-conjugated poly (ethylene glycol) 2000 material (ALN-PEG2k-ALN). The ALN-PEG2k-ALN was characterized using 1H NMR and 31P NMR and FTIR. ALN-PEG2k-ALN-modified calcium phosphate nanoparticles (APA-CPNPs) with an ALN targeting moiety and hydrophilic poly (ethylene glycol) arms tiled on the surface was prepared for bone-targeted drug delivery. The distribution of ALN-PEG2k-ALN was tested by X-ray photoelectron spectroscopy. Isothermal titration calorimetry data indicated that similar to free ALN, both ALN-PEG2k-ALN and APA-CPNPs can bind to calcium ions. The bone-binding ability of APA-CPNPs was verified via ex vivo imaging of bone fragments. An in vitro release experiment demonstrated that APA-CPNPs can release drug faster in an acid environment than a neutral environment. Cell viability experiments indicated that blank APA-CPNPs possessed excellent biocompatibility with normal cells. Methotrexate (MTX) loaded APA-CPNPs have the same ability to inhibit cancer cells as free drug at high concentrations, while they are slightly weaker at low concentrations. All of these experiments verified the prospective application of APA-CPNPs as a bone-targeting drug delivery system.
Collapse
|
11
|
Water dispersible hydroxyapatite nanoparticles functionalized by a family of aminoalkyl phosphates. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|