Abeed AAO, El-Emary TI, Alharthi S. Efficient synthetic access to novel indolo[2,3-b]quinoxaline-based heterocycles.
Curr Org Synth 2021;
19:177-185. [PMID:
34370643 DOI:
10.2174/1570179418666210809144906]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND
This paper showed the synthetic capability of the indolo[2,3-b]quinoxaline nucleus to be provided as an excellent precursor for the synthesis of various heterocyclic compounds. These synthetic routes proceed via the formation of 3-(6H-indolo[2,3-b]quinoxalin-6-yl)propane hydrazide (2). The carbohydrazide 2 and its reactions with different reagents give five and six-membered rings, such as 1,3,4-thiadiazole, 1,3,4-oxadiazole, 1,2,4-triazole, and 1,2,4-triazine.
METHODS
All chemicals used in the current study were of analytical grade. Melting points were determined using an APP Digital ST 15 melting point apparatus and were uncorrected. FT-IR spectra were recorded on a Pye-Unicam SP3-100 and Shimadzu-408 spectrophotometers in KBr pellets and given in (cm-1) KBr. The NMR spectra were detected by a Bruker AV-400 spectrometer (400 MHz for 1H, 100 MHz for 13C and 40.55 MHz for 15N), Institute of Organic Chemistry, Karlsruhe, Germany. Chemical shifts were expressed as δ (ppm) with TMS as an internal reference. Mass spectrometry was provided on a Varian MAT 312 instrument in EI mode (70 eV).
RESULTS
The target compounds were obtained, and their structures were completely elucidated by various spectral and elemental analyses (Ft-IR, 1H-NMR, 13C-NMR, and mass spectrometry).
CONCLUSION
The current work showed a view of the reactivity of the carbohydrazide group. The carbohydrazide 2 was obtained from the hydrazinolysis of carboethoxy compound 1 and exploited as a key intermediate to synthesize heterocyclic compounds with different rings.
Collapse