Malta G, Pina J, Lima JC, Parola AJ, Branco PS. Acenaphthylene-Based Chromophores for Dye-Sensitized Solar Cells: Synthesis, Spectroscopic Properties, and Theoretical Calculations.
ACS OMEGA 2024;
9:14627-14637. [PMID:
38560006 PMCID:
PMC10976351 DOI:
10.1021/acsomega.4c01201]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
A set of acenaphthylene dyes with arylethynyl π-bridges was tested for dye-sensitized solar cells (DSSCs). Crucial steps for the extension of the conjugated system from the acenaphylene core involved Sonogashira coupling reactions. Phenyl, thiophene, benzotriazole, and thieno-[3,2-b]thiophene moieties were employed to extend the conjugation of the π-bridges. The systems were characterized by cyclic voltammetry and by UV-vis absorption and emission. The spectroscopic characterization showed that the last three bridges resulted in red-shifted absorption and emission spectra relative to the parent phenyl-bridged compound, in accordance with TD-DFT calculations. The phenylethynyl derivative 6a achieved a conversion efficiency of 2.51% with Voc, Jsc, and FF values of 0.365 V, 13.32 mA/cm2, and 0.52, respectively. The efficiency of this compound improved to 3.15% with the addition of CDCA (10 mM), representing the best efficiency result in this study. The overall conversion efficiency of the other aryl derivatives 6b-d proved to be significantly inferior (14-40%) to that of 6a due to a significant decrease of Jsc.
Collapse