1
|
Fan X, Wu J, Zhang T, Liu J. Electrochemical/Electrochemiluminescence Sensors Based on Vertically-Ordered Mesoporous Silica Films for Biomedical Analytical Applications. Chembiochem 2024; 25:e202400320. [PMID: 38874487 DOI: 10.1002/cbic.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Vertically-ordered mesoporous silica films (VMSF, also named as silica isoporous membranes) have shown tremendous potential in the field of electroanalytical sensors due to their unique features in terms of controllable and ultrasmall nanopores, high molecular selectivity and permeability, and mechanical stability. This review will present the recent progress on the biomedical analytical applications of VMSF, focusing on the small biomolecules, diseases-related biomarkers, drugs and cancer cells. Finally, conclusions with recent developments and future perspective of VMSF in the relevant fields will be envisioned.
Collapse
Affiliation(s)
- Xue Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiayi Wu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Jiyang Liu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
2
|
Yang Y, Wang H, Zhang Y, Chen L, Chen G, Bao Z, Yang Y, Xie Z, Zhao Q. An Optimized Proteomics Approach Reveals Novel Alternative Proteins in Mouse Liver Development. Mol Cell Proteomics 2022; 22:100480. [PMID: 36494044 PMCID: PMC9823216 DOI: 10.1016/j.mcpro.2022.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Alternative ORFs (AltORFs) are unannotated sequences in genome that encode novel peptides or proteins named alternative proteins (AltProts). Although ribosome profiling and bioinformatics predict a large number of AltProts, mass spectrometry as the only direct way of identification is hampered by the short lengths and relative low abundance of AltProts. There is an urgent need for improvement of mass spectrometry methodologies for AltProt identification. Here, we report an approach based on size-exclusion chromatography for simultaneous enrichment and fractionation of AltProts from complex proteome. This method greatly simplifies the variance of AltProts discovery by enriching small proteins smaller than 40 kDa. In a systematic comparison between 10 methods, the approach we reported enabled the discovery of more AltProts with overall higher intensities, with less cost of time and effort compared to other workflows. We applied this approach to identify 89 novel AltProts from mouse liver, 39 of which were differentially expressed between embryonic and adult mice. During embryonic development, the upregulated AltProts were mainly involved in biological pathways on RNA splicing and processing, whereas the AltProts involved in metabolisms were more active in adult livers. Our study not only provides an effective approach for identifying AltProts but also novel AltProts that are potentially important in developmental biology.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Lei Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Gennong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical School, Beijing, China
| | - Yang Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China,For correspondence: Qian Zhao
| |
Collapse
|
3
|
Han T, Cong H, Yu B, Shen Y. Application of peptide biomarkers in life analysis based on liquid chromatography-mass spectrometry technology. Biofactors 2022; 48:725-743. [PMID: 35816279 DOI: 10.1002/biof.1875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
Abstract
Biomedicine is developing rapidly in the 21st century. Among them, the qualitative and quantitative analysis of peptide biomarkers is of considerable importance for the diagnosis and therapy of diseases and the quality evaluation of drugs and food. The identification and quantitative analysis of peptides have been going on for decades. Traditionally, immunoassays or biological assays are generally used to quantify peptides in biological matrices. However, the selectivity and sensitivity of these methods cannot meet the requirements of the application. The separation and analysis technique of liquid chromatography-mass spectrometry (LC-MS) supplies a reliable alternative. In contrast to immunoassays, LC-MS methods are capable of providing the analytical prowess necessary to satisfy the demands of peptide biomarker research in the life sciences arena. This review article provides a historical account of the in-roads made by LC-MS technology for the detection of peptide biomarkers in the past 10 years, with the focus on the qualification/quantification developments and their applications.
Collapse
Affiliation(s)
- Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Hu LX, Luo MF, Guo WJ, He X, Zhou J, Qiu XY, Gong JP, Li MC, Chen XT, Wu D, Huang WP. Quality Assessment and Antioxidant Activities of the Blossoms of Inula Nervosa Wall. J AOAC Int 2021; 104:818-826. [PMID: 33450009 DOI: 10.1093/jaoacint/qsaa143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Currently, although Inula nervosa Wall is substantially investigated, little is understood about blossoms of Inula nervosa Wall (BINW). OBJECTIVE In this work, we systematically investigated the antioxidant activity of the extract from BINW by various standard assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical ability, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) di-ammonium salt radical cation (ABTS), and ferric reducing antioxidant potential (FRAP). METHODS Chemical compounds were tentatively identified through an UHPLC-QTOF-MS system. Furthermore, the contents of nine compounds were detected with UHPLC method coupled with photodiode array (PDA) detector. By carefully analyzing the quantitative data via clusters analysis and principal component analysis (PCA). RESULTS Forty-six compounds were tentatively identified, and our results showed that nine compound samples in 21 batches of BINW collected from different areas could be differentiated and analyzed by a heatmap visualization. In addition, the contents of nine compounds (flavonoids, phenolic acids) exhibited a total of higher amounts and better antioxidant activities from Yunnan than those from the other three origins. CONCLUSIONS Our study not only developed a powerful platform to explain the difference between traditional Chinese medicines species that are closely related through the chemometric and chemical profiling, but also presented a useful method to establish quality criteria of BINW with multiple origins. HIGHLIGHTS To characterize the BINW in detail, we not only performed DPPH, FRAP, and ABTS assays to investigate its antioxidant activity, but also established UHPLC-QTOF-MS/MS- and UHPLC-PDA-based methods to comprehensively identify and qualitatively analyze its components.
Collapse
Affiliation(s)
- Li-Xia Hu
- Jiangxi Chest Hospital, 346 Dieshan Road, Nanchang, 330006 Jiangxi, China
| | - Mei-Feng Luo
- The Third Affiliated Hospital of Nanchang University, 128 Xianshang North Road, Nanchang, 330006 Jiangxi, China
| | - Wen-Jing Guo
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004 Jiangxi, China
| | - Xiao He
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004 Jiangxi, China
| | - Jun Zhou
- Jiangxi Chest Hospital, 346 Dieshan Road, Nanchang, 330006 Jiangxi, China
| | - Xiao-Yu Qiu
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004 Jiangxi, China
| | - Jian-Ping Gong
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004 Jiangxi, China
| | - Meng-Chu Li
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang, 330006 Jiangxi, China
| | - Xin-Tao Chen
- The Third Affiliated Hospital of Nanchang University, 128 Xianshang North Road, Nanchang, 330006 Jiangxi, China
| | - Dong Wu
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang, 330006 Jiangxi, China
| | - Wen-Ping Huang
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang, 330006 Jiangxi, China
| |
Collapse
|
5
|
Qi H, Jiang L, Jia Q. Application of magnetic solid phase extraction in separation and enrichment of glycoproteins and glycopeptides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Sun C, He J, Wu H, Song X, Li J, Huang L, Xu X, Wang M, Zhang R, Abliz Z. A rapid and sensitive UPLC–MS/MS method for quantitative determination of arformoterol in rat plasma, lung and trachea tissues. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Zhao H, Li J, Ma X, Huo W, Xu S, Cai Z. Simultaneous determination of bisphenols, benzophenones and parabens in human urine by using UHPLC-TQMS. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|