1
|
Delgado-Povedano MDM, Lara FJ, Gámiz-Gracia L, García-Campaña AM. Non-aqueous capillary electrophoresis-time of flight mass spectrometry method to determine emerging mycotoxins. Talanta 2023; 253:123946. [PMID: 36167011 DOI: 10.1016/j.talanta.2022.123946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Enniatins (ENN) and beauvericin (BEA) are emerging mycotoxins that have been traditionally determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). However, to the best of our knowledge, no analytical methods based on capillary electrophoresis (CE)-MS/MS have been reported so far. Due to their non-polar nature, in this work, a non-aqueous CE (NACE) method coupled to quadrupole time-of-flight-MS is proposed for the first time to identify and quantify these mycotoxins. Determination was achieved in 4 min under optimum conditions: 40 mM ammonium acetate in 80:20 (v/v) acetonitrile-methanol (buffer), 30 kV (voltage), 80 cm (capillary length), 20 °C (capillary temperature) and 50 mbar × 30 s (injection). Higher selectivity can be achieved when compared with LC due to the formation of exclusive CE adducts such as [M + CH3CH2NH3]+. "All Ions" acquisition mode was selected as it allows the quantification of the usual ENNs, as well as the identity confirmation of less common ENNs. The method was validated for wheat samples, obtaining limits of quantification from 4.0 to 8.3 μg/kg depending on the emerging mycotoxin, recovery values higher than 87.4%, and intra- and inter-day precision values (RSDs) lower than 15.1% in all cases. Finally, 29 wheat samples were analyzed, finding 26 samples with concentrations of enniatin B higher than the limit of quantification (7.5-1480 μg/kg), 20 for enniatin B1 (5.2-550 μg/kg), 7 for enniatin A (10-55 μg/kg), 4 for enniatin A1 (12.6-77 μg/kg) and 5 for BEA (9.2-16.4 μg/kg). Moreover, two other ENNs were tentatively identified.
Collapse
Affiliation(s)
- María Del Mar Delgado-Povedano
- Department of Analytical Chemistry, Avda. Fuente Nueva s/n, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Francisco J Lara
- Department of Analytical Chemistry, Avda. Fuente Nueva s/n, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Avda. Fuente Nueva s/n, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Avda. Fuente Nueva s/n, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| |
Collapse
|
2
|
Seyfinejad B, Jouyban A. Capillary electrophoresis-mass spectrometry in pharmaceutical and biomedical analyses. J Pharm Biomed Anal 2022; 221:115059. [DOI: 10.1016/j.jpba.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
|
3
|
Peng L, Gao X, Wang L, Zhu A, Cai X, Li P, Li W. Design of experiment techniques for the optimization of chromatographic analysis conditions: A review. Electrophoresis 2022; 43:1882-1898. [PMID: 35848309 DOI: 10.1002/elps.202200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
Design of experiment (DoE) techniques have been widely used in the field of chromatographic parameters optimization as a valuable tool. A systematic literature review of the available DoE techniques applied to the development of a chromatographic analysis method is presented in this paper. First, the most common available designs and the implementation steps of DoE are comprehensively introduced. Then the studies in recent 10 years for the application of DoE techniques in various chromatographic techniques are discussed, such as capillary electrophoresis, liquid chromatography, gas chromatography, thin-layer chromatography, and high-speed countercurrent chromatography. Current problems and future outlooks are finally given to provide a certain inspiration of research in the application of DoE techniques to the different chromatographic techniques field. This review contributes to a better understanding of the DoE techniques for the efficient optimization of chromatographic analysis conditions, especially for the analysis of complex systems, such as multicomponent drugs and natural products.
Collapse
Affiliation(s)
- Le Peng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xin Gao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Long Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Aiqiang Zhu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xiang Cai
- Langtian Pharmaceutical (Hubei) Co., Ltd., Huangshi, P. R. China
| | - Pian Li
- Langtian Pharmaceutical (Hubei) Co., Ltd., Huangshi, P. R. China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
4
|
Tracking cellular transformation of As(III) in HepG2 cells by single-cell focusing/capillary electrophoresis coupled to ICP-MS. Anal Chim Acta 2022; 1226:340268. [DOI: 10.1016/j.aca.2022.340268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
|
5
|
Kuzyk VO, Somsen GW, Haselberg R. CE-MS for Proteomics and Intact Protein Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:51-86. [PMID: 34628627 DOI: 10.1007/978-3-030-77252-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This chapter aims to explore various parameters involved in achieving high-end capillary electrophoresis hyphenated to mass spectrometry (CE-MS) analysis of proteins, peptides, and their posttranslational modifications. The structure of the topics discussed in this book chapter is conveniently mapped on the scheme of the CE-MS system itself, starting from sample preconcentration and injection techniques and finishing with mass analyzer considerations. After going through the technical considerations, a variety of relevant applications for this analytical approach are presented, including posttranslational modifications analysis, clinical biomarker discovery, and its growing use in the biotechnological industry.
Collapse
Affiliation(s)
- Valeriia O Kuzyk
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Preparation and applications of cellulose-functionalized chiral stationary phases: A review. Talanta 2021; 225:121987. [DOI: 10.1016/j.talanta.2020.121987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
|
7
|
|
8
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115807] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
de Souza Campos Junior FA, Petrarca MH, Meinhart AD, de Jesus Filho M, Godoy HT. Multivariate optimization of extraction and validation of phenolic acids in edible mushrooms by capillary electrophoresis. Food Res Int 2019; 126:108685. [DOI: 10.1016/j.foodres.2019.108685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
|
10
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
11
|
Gomes FP, Yates JR. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. MASS SPECTROMETRY REVIEWS 2019; 38:445-460. [PMID: 31407381 PMCID: PMC6800771 DOI: 10.1002/mas.21599] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Progress in proteomics research has led to a demand for powerful analytical tools with high separation efficiency and sensitivity for confident identification and quantification of proteins, posttranslational modifications, and protein complexes expressed in cells and tissues. This demand has significantly increased interest in capillary electrophoresis-mass spectrometry (CE-MS) in the past few years. This review provides highlights of recent advances in CE-MS for proteomics research, including a short introduction to top-down mass spectrometry and native mass spectrometry (native MS), as well as a detailed overview of CE methods. Both the potential and limitations of these methods for the analysis of proteins and peptides in synthetic and biological samples and the challenges of CE methods are discussed, along with perspectives about the future direction of CE-MS. @ 2019 Wiley Periodicals, Inc. Mass Spec Rev 00:1-16, 2019.
Collapse
Affiliation(s)
| | - John R. Yates
- Correspondent author: , Phone number: (858) 784-8862, Departments of Molecular Medicine and Neurobiology, 10550 North Torrey Pines Road, SR302B, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
12
|
Zhang W, Segers K, Mangelings D, Van Eeckhaut A, Hankemeier T, Vander Heyden Y, Ramautar R. Assessing the suitability of capillary electrophoresis-mass spectrometry for biomarker discovery in plasma-based metabolomics. Electrophoresis 2019; 40:2309-2320. [PMID: 31025710 PMCID: PMC6767474 DOI: 10.1002/elps.201900126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/20/2023]
Abstract
The actual utility of capillary electrophoresis-mass spectrometry (CE-MS) for biomarker discovery using metabolomics still needs to be assessed. Therefore, a simulated comparative metabolic profiling study for biomarker discovery by CE-MS was performed, using pooled human plasma samples with spiked biomarkers. Two studies have been carried out in this work. Focus of study I was on comparing two sets of plasma samples, in which one set (class I) was spiked with five isotope-labeled compounds, whereas another set (class II) was spiked with six different isotope-labeled compounds. In study II, focus was also on comparing two sets of plasma samples, however, the isotope-labeled compounds were spiked to both class I and class II samples but with concentrations which differ by a factor two between both classes (with one compound absent in each class). The aim was to determine whether CEMS-based metabolomics could reveal the spiked biomarkers as the main classifiers, applying two different data analysis software tools (MetaboAnalyst and Matlab). Unsupervised analysis of the recorded metabolic profiles revealed a clear distinction between class I and class II plasma samples in both studies. This classification was mainly attributed to the spiked isotope-labeled compounds, thereby emphasizing the utility of CE-MS for biomarker discovery.
Collapse
Affiliation(s)
- Wei Zhang
- Biomedical Microscale AnalyticsDivision of Systems Biomedicine and PharmacologyLeiden Academic Centre for Drug ResearchLeiden UniversityThe Netherlands
| | - Karen Segers
- Biomedical Microscale AnalyticsDivision of Systems Biomedicine and PharmacologyLeiden Academic Centre for Drug ResearchLeiden UniversityThe Netherlands
- Department of Analytical ChemistryApplied Chemometrics and Molecular ModellingVrije Universiteit BrusselBrusselBelgium
- Department of Pharmaceutical ChemistryDrug Analysis and Drug InformationCenter for NeurosciencesVrije Universiteit BrusselBrusselBelgium
| | - Debby Mangelings
- Department of Analytical ChemistryApplied Chemometrics and Molecular ModellingVrije Universiteit BrusselBrusselBelgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical ChemistryDrug Analysis and Drug InformationCenter for NeurosciencesVrije Universiteit BrusselBrusselBelgium
| | - Thomas Hankemeier
- Biomedical Microscale AnalyticsDivision of Systems Biomedicine and PharmacologyLeiden Academic Centre for Drug ResearchLeiden UniversityThe Netherlands
| | - Yvan Vander Heyden
- Department of Analytical ChemistryApplied Chemometrics and Molecular ModellingVrije Universiteit BrusselBrusselBelgium
| | - Rawi Ramautar
- Biomedical Microscale AnalyticsDivision of Systems Biomedicine and PharmacologyLeiden Academic Centre for Drug ResearchLeiden UniversityThe Netherlands
| |
Collapse
|
13
|
|
14
|
GUO XY, HUANG XM, ZHAI JF, BAI H, LI XX, MA XX, MA Q. Research Advances in Ambient Ionization and Miniature Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61145-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Open tubular capillary electrochromatography with block co-polymer coating for separation of β-lactam antibiotics. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Abstract
Capillary electrophoresis (CE) is a well-established and one of the most powerful separation techniques in the field of chiral separations. Its hyphenation with mass spectrometry (MS) combines both the high separation efficiency and low sample consumption of CE and the high sensitivity and structural information of MS. Thus, the outstanding chiral resolution power of CE along with the MS advantages makes CE-MS a perfect combination to achieve sensitive enantioseparations. This chapter describes three representative examples of different approaches used in the chiral analysis of amino acids in biological fluids by CE-MS. The first methodology uses the partial filling technique to avoid the entry of cyclodextrins in the MS source. The second method shows the possibility to carry out the direct coupling EKC-MS even when a relative high concentration of a native cyclodextrin is used as chiral selector. The last example illustrates an alternative strategy based on the formation of stable diastereomers between an enantiomerically pure chiral reagent and the amino acids enantiomers which can be separated in an achiral environment.
Collapse
|
17
|
Beutner A, Herl T, Matysik FM. Selectivity enhancement in capillary electrophoresis by means of two-dimensional separation or dual detection concepts. Anal Chim Acta 2018; 1057:18-35. [PMID: 30832915 DOI: 10.1016/j.aca.2018.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
For the identification and quantification of analytes in complex samples, highly selective analytical strategies are required. The selectivity of single separation techniques such as gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) with common detection principles can be enhanced by hyphenating orthogonal separation techniques but also by using complementary detection systems. In this review, two-dimensional systems containing CE in at least one dimension are reviewed, namely LC-CE or 2D CE systems. Particular attention is paid to the aspect of selectivity enhancement due to the orthogonality of the different separation mechanisms. As an alternative concept, dual detection approaches are reviewed using the common detectors of CE such as UV/VIS, laser-induced fluorescence, capacitively coupled contactless conductivity (C4D), electrochemical detection, and mass spectrometry. Special emphasis is given to dual detection systems implementing the highly flexible C4D as one detection component. Selectivity enhancement can be achieved in case of complementarity of the different detection techniques.
Collapse
Affiliation(s)
- Andrea Beutner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Thomas Herl
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
18
|
|
19
|
Gonçalves Silva G, Yamassaki de Almeida E, Seber P, Henrique Settanni P, Pereira de Oliveira A, Ferreira Santos MS, Lucio do Lago C, Cieslarova Z, Rodrigues F. Application of capillary electrophoresis combined with conductometric and UV detection to monitor meteorite simulant bioleaching by Acidithiobacillus ferrooxidans. Electrophoresis 2018; 39:2898-2905. [PMID: 30229957 DOI: 10.1002/elps.201800212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/19/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022]
Abstract
The importance of microorganisms and biotechnology in space exploration and future planets colonization has been discussed in the literature. Meteorites are interesting samples to study microbe-mineral interaction focused on space exploration. The chemolithotropic bacterium Acidithiobacillus ferrooxidans has been used as model to understand the iron and sulfur oxidation. In this work, capillary electrophoresis with capacitively coupled contactless conductivity detection and UV detection was used to monitor bacterial growth in a meteorite simulant by measuring the conversion of Fe2+ into Fe+3 . The effect of Co2+ and Ni2+ (metals also found in meteorites) on the bacterial growth was also evaluated. The presented method allowed the analyses of all metals in a single run (less than 8 min). The background electrolyte was composted of 10 mmol/L α-hydroxyisobutyric acid/Histidine. For comparison purpose, the samples were also analyzed by UV-Vis spectrophotometry. The Fe2+ conversion into Fe3+ by A. ferrooxidans was observed up to 36 h with the growth rate constant of 0.19/h and 0.21/h in Tuovinen and Kelly (T&K) and in meteorite simulant media, respectively. The developed method presents favorable prospect to monitor the growth of other chemolithotropic microorganisms for biotechnology applications.
Collapse
Affiliation(s)
- Gabriel Gonçalves Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Eiji Yamassaki de Almeida
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Pedro Seber
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Pedro Henrique Settanni
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Aline Pereira de Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.,Department of Chemistry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Claudimir Lucio do Lago
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Zuzana Cieslarova
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabio Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Sensitive analysis of curcuminoids via micellar electrokinetic chromatography with laser-induced native fluorescence detection and mixed micelles-induced fluorescence synergism. J Chromatogr A 2018; 1564:207-213. [DOI: 10.1016/j.chroma.2018.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
|