1
|
Bai J, Wu M, He Q, Wang H, Liao Y, Chen L, Chen S. Emerging Doped Metal-Organic Frameworks: Recent Progress in Synthesis, Applications, and First-Principles Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306616. [PMID: 38342672 DOI: 10.1002/smll.202306616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/14/2024] [Indexed: 02/13/2024]
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials with a long-range ordered structure and excellent specific surface area and have found a wide range of applications in diverse fields, such as catalysis, energy storage, sensing, and biomedicine. However, their poor electrical conductivity and chemical stability, low capacity, and weak adhesion to substrates have greatly limited their performance. Doping has emerged as a unique strategy to mitigate the issues. In this review, the concept, classification, and characterization methods of doped MOFs are first introduced, and recent progress in the synthesis and applications of doped MOFs, as well as the rapid advancements and applications of first-principles calculations based on the density functional theory (DFT) in unraveling the mechanistic origin of the enhanced performance are summarized. Finally, a perspective is included to highlight the key challenges in doping MOF materials and an outlook is provided on future research directions.
Collapse
Affiliation(s)
- Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Mengcheng Wu
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, United States
| |
Collapse
|
2
|
Zhao L, Xu J, Li M, Ji Y, Sun Y, Zhang Z, Hu X, Peng Z, Wang Y, Zheng C, Sun X. MOF-Enhanced Aluminosilicate Ceramic Membranes Using Non-Firing Processes for Pesticide Filtration and Phytochrome Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:944. [PMID: 38869569 PMCID: PMC11173857 DOI: 10.3390/nano14110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Aluminosilicates, abundant and crucial in both natural environments and industry, often involve uncontrollable chemical components when derived from minerals, making further chemical purification and reaction more complicated. This study utilizes pure alumina and fumed silica powders as more controllable sources, enhancing aluminosilicate reactivity through room temperature (non-firing) processing and providing a robust framework that resists mechanical stress and high temperature. By embedding iron-based metal-organic frameworks (Fe-MOF/non-firing aluminosilicate membranes) within the above matrix, these ceramic membranes not only preserve their mechanical robustness but also gain significant chemical functionality, enhancing their capacity to removing phytochromes from the vegetables. Sodium hydroxide and sodium silicate were selected as activators to successfully prepare high-strength, non-firing aluminosilicate membranes. These membranes demonstrated a flexural strength of 8.7 MPa under wet-culture conditions with a molar ratio of Al2O3:SiO2:NaOH:Na2SiO3 at 1:1:0.49:0.16. The chlorophyll adsorption of spinach conducted on these membranes showed a removal rate exceeding 90% at room temperature and pH = 9, highlighting its potential for the selective adsorption of chlorophyll. This study underscores the potential of MOF-enhanced aluminosilicate ceramic membranes in environmental applications, particularly for agricultural pollution control.
Collapse
Affiliation(s)
- Liping Zhao
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China; (L.Z.); (M.L.); (Y.J.); (Y.S.); (Z.Z.); (Z.P.); (Y.W.)
| | - Jinyun Xu
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China; (L.Z.); (M.L.); (Y.J.); (Y.S.); (Z.Z.); (Z.P.); (Y.W.)
| | - Ming Li
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China; (L.Z.); (M.L.); (Y.J.); (Y.S.); (Z.Z.); (Z.P.); (Y.W.)
| | - Yanyan Ji
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China; (L.Z.); (M.L.); (Y.J.); (Y.S.); (Z.Z.); (Z.P.); (Y.W.)
| | - Yu Sun
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China; (L.Z.); (M.L.); (Y.J.); (Y.S.); (Z.Z.); (Z.P.); (Y.W.)
| | - Ziqi Zhang
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China; (L.Z.); (M.L.); (Y.J.); (Y.S.); (Z.Z.); (Z.P.); (Y.W.)
| | - Xudong Hu
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhe Peng
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China; (L.Z.); (M.L.); (Y.J.); (Y.S.); (Z.Z.); (Z.P.); (Y.W.)
| | - Yicong Wang
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China; (L.Z.); (M.L.); (Y.J.); (Y.S.); (Z.Z.); (Z.P.); (Y.W.)
| | - Chunming Zheng
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China; (L.Z.); (M.L.); (Y.J.); (Y.S.); (Z.Z.); (Z.P.); (Y.W.)
| | - Xiaohong Sun
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
3
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
4
|
Shang Z, Su T, Jin D, Xu Q, Hu X, Shu Y. An integrated and flexible PDMS/Au film-based electrochemical immunosensor via Fe–Co MOF as a signal amplifier for alpha fetoprotein detection. Biosens Bioelectron 2023; 230:115245. [PMID: 36989661 DOI: 10.1016/j.bios.2023.115245] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Ultrasensitive determination of tumor marker (TM) is of great significance in cancer prevention and diagnosis. Traditional TM detection methods involve large instrumentation and professional manipulation, which complicate the assay procedures and increase the cost of investment. To resolve these problems, an integrated electrochemical immunosensor based on the flexible polydimethylsiloxane/gold (PDMS/Au) film with Fe-Co metal-organic framework (Fe-Co MOF) as a signal amplifier was fabricated for ultrasensitive determination of alpha fetoprotein (AFP). First, gold layer was deposited on the hydrophilic PDMS film to form the flexible three-electrode system, and then the thiolated aptamer for AFP was immobilized. Afterward, the aminated Fe-Co MOF possessing high peroxidase-like activity and large specific surface area was prepared by a facile solvothermal method, and subsequently the biofunctionalized MOF could effectively capture biotin antibody (Ab) to form MOF-Ab as a signal probe and amplify the electrochemical signal remarkably, thereby realizing highly sensitive detection of AFP with a wide linear range of 0.01-300 ng/mL and a low detection limit of 0.71 pg/mL. In addition, the PDMS based-immunosensor showed good accuracy for assaying of AFP in clinical serum samples. The integrated and flexible electrochemical immunosensor based on the Fe-Co MOF as a signal amplifier demonstrates great potential for application in the personalized point-of-care (POC) clinical diagnosis.
Collapse
|
5
|
Electrodeposition of binderless Ni,Zn-MOF on porous nickel substrate for high-efficiency supercapacitors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Li C, Sha L, Yang K, Kong F, Li P, Tao Y, Zhao X, Chen H. Effects of ultrafiltration on Co-Metal Organic Framework/pre-hydrolysis solution carbon materials for supercapacitor energy storage. Front Chem 2022; 10:991230. [PMID: 36051623 PMCID: PMC9425199 DOI: 10.3389/fchem.2022.991230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Here, a Co-Metal Organic Framework/pre-hydrolysis (Co-MOF/pre-hydrolysis) solution carbon material is prepared by a mild and environmentally-friendly hydrothermal carbonization technique using a pulping pre-hydrolysis solution as the raw material and Co-MOF as the metal dopant. The stable hollow structure provide sufficient space for particle shrinkage and expansion, while the low density and large specific surface area of the long, hairy tentacle structure provide a greater contact area for ions, which shorten the transmission path of electrons and charges. The materials exhibit excellent specific capacitance (400 F/g, 0.5 A/g) and stability (90%, 10,000 cycles). The Change of different concentration ratios in the structures significantly affect the electrochemical performance. The specific surface area of the carbon materials prepared by ultra-filtration increased, but the specific surface area decrease as ultrafiltration concentration increase. The specific capacitance decrease from 336 F/g for C-ZIF-67-1/3 volume ultrafiltration to 258 F/g for C-ZIF-67-1/5 ultrafiltration. The results indicate that energy storage by the carbon materials relied on a synergistic effect between their microporous and mesoporous structures. The micropores provide storage space for the transmission of ions, while the mesopores provide ion transport channels. The separation of large and small molecules after ultrafiltration concentration limit the ion transmission and energy storage of the pores.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Zhao
- *Correspondence: Xin Zhao, ; Honglei Chen,
| | | |
Collapse
|
7
|
Deyab M, Mohsen Q, Slavcheva E. Co-phthalocyanin/CNTs nanocomposites: Synthesis, characterizations, and application as an efficient supercapacitor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Hang X, Zhao J, Xue Y, Yang R, Pang H. Synergistic effect of Co/Ni bimetallic metal-organic nanostructures for enhanced electrochemical energy storage. J Colloid Interface Sci 2022; 628:389-396. [DOI: 10.1016/j.jcis.2022.07.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/31/2023]
|
9
|
Luo L, He Q, Chen S, Yang D, Chen Y. Metal-organic framework derived carbon nanoarchitectures for highly efficient flow-electrode CDI desalination. ENVIRONMENTAL RESEARCH 2022; 208:112727. [PMID: 35063431 DOI: 10.1016/j.envres.2022.112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) has shown a robust desalination performance, in which the electrode materials play a crucial role. However, commercial activated carbon (AC) commonly with relatively poor conductivity, which can be a limit to the desalination process. To address this issue, we successfully prepared ZIF-8 derived nanocarbon materials (Zx, X = 0, 1, 2, 3, the number representing the activator ratio) via a pyrolysis activation procedure as electrode materials for FCDI desalination. The results manifested that Z3 achieved desalination rates of 0.0403 and 0.094 mg min-1 cm-2 in the isolated closed cycle (ICC) and the short-circuited closed cycle (SCC) mode, respectively, at 1.2 V with only 5 wt% carbon loading. The desalination rate of Z3 in the SCC mode was improved with flow rates and influent salt concentrations increase, reaching 0.278 mg min-1 cm-2 under a continuous operation. In the ICC mode, it was found that the adsorption capacity of the Zx sample was positively correlated with its specific surface area. The superior performance of Z3 could be attributed to the high conductivity, large specific surface area and well-developed pores. Overall, this work provided new insights and references for electrode material's application to FCDI desalination.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China.
| | - Siqi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China
| | - Dongxu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
10
|
In Situ Construction of ZIF-67-Derived Hybrid Tricobalt Tetraoxide@Carbon for Supercapacitor. NANOMATERIALS 2022; 12:nano12091571. [PMID: 35564280 PMCID: PMC9105161 DOI: 10.3390/nano12091571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023]
Abstract
The Co3O4 electrode is a very promising material owing to its ultrahigh capacitance. Nevertheless, the electrochemical performance of Co3O4-based supercapacitors is practically confined by the limited active sites and poor conductivity of Co3O4. Herein, we provide a facile synthetic strategy of tightly anchoring Co3O4 nanosheets to a carbon fiber conductive cloth (Co3O4@C) using the zeolitic imidazolate framework-67 (ZIF-67) sacrificial template via in situ impregnation and the pyrolysis method. Benefiting from the enhancement of conductivity and the increase in active sites, the binder-free porous Co3O4@C supercapacitor electrodes possess typical pseudocapacitance characteristics, with an acceptable specific capacitance of ~251 F/g at 1 A/g and long-term cycling stability (90% after cycling 5000 times at 3 A/g). Moreover, the asymmetric and flexible supercapacitor composed of Co3O4@C and activated carbon is further assembled, and it can drive the red LED for 6 min.
Collapse
|
11
|
Asymmetric supercapacitor based on novel coal fly ash derived metal–organic frameworks as positive electrode and its derived carbon as negative electrode. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01672-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Yu Y, Han Y, Cui J, Wang C. Cobalt-based metal-organic framework electrodeposited on nickel foam as a binder-free electrode for high-performance supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-based metal-organic framework (Co-MOF) has been in-situ grown on nickel foam (NF) by cathodic electrodeposition using highly active cobalt surface modifier to enable uniform nucleation and tight growth of Co-MOF....
Collapse
|
13
|
Tang Y, Li H, Zhang R, Guo W, Yu M. Co 3ZnC@NC Material Derived from ZIF-8 for Lithium-Ion Capacitors. ACS OMEGA 2021; 6:28528-28537. [PMID: 34746548 PMCID: PMC8567260 DOI: 10.1021/acsomega.1c02271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Metal-organic framework (MOF)-derived carbon materials were widely reported as the anodes of lithium-ion capacitors (LICs). However, tunning the structure and electrochemical performance of the MOF-derived carbon materials is still challenging. Herein, metal carbide materials of Co3ZnC@NC-8:2 were obtained by the pyrolysis of the MOF materials of Co0.2Zn0.8ZIF-8 (Zn/Co ratio of 8:2). A half-cell assembled with the Co3ZnC@NC-8:2 electrode exhibits a discharge capacity of the electrode material of 598 mAh g-1 at a current density of 0.1 A g-1. After 100 cycles, the retention rate of discharge specific capacity is about 90%. The high performance of Co3ZnC@NC-8:2 is ascribed to its high crystalline degree and well-defined structure, which facilitates the intercalation/deintercalation of lithium ions and buffers the volume change during the charge/discharge process. The high capacitance contribution ratio calculated by cyclic voltammetry (CV) curves at different scanning rates indicates the pseudocapacitance storage mechanism. LICs constructed from the Co3ZnC@NC-8:2 material have a rectangular CV curve, while the charge-discharge curve has a symmetrical triangular shape. This study indicates that MOF-derived carbon is one of the promising materials for high-performance LICs.
Collapse
Affiliation(s)
- Yongfu Tang
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Haiwei Li
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Ruonan Zhang
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Wenfeng Guo
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Meiqi Yu
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
14
|
Hu X, Liu S, Wang Y, Huang X, Jiang J, Cong H, Lin H, Han S. Hierarchical CuCo 2O 4@CoS-Cu/Co-MOF core-shell nanoflower derived from copper/cobalt bimetallic metal-organic frameworks for supercapacitors. J Colloid Interface Sci 2021; 600:72-82. [PMID: 34004431 DOI: 10.1016/j.jcis.2021.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
Rational design of composite materials with unique core-shell nanoflower structures is an important strategy for improving the electrochemical properties of supercapacitors such as capacitance and cycle stability. Herein, a two-step electrodeposition technique is used to orderly synthesize CuCo2O4 and CoS on Ni foam coated with Cu/Co bimetal metal organic framework (Cu/Co-MOF) to fabricate a hierarchical core-shell nanoflower material (CuCo2O4@CoS-Cu/Co-MOF). This unique structure can increase the electrochemically active site of the composite, promoting the Faradaic redox reaction and enhancing its electrochemical properties. CuCo2O4@CoS-Cu/Co-MOF shows a prominent specific capacitance of 3150 F g-1 at 1 A g-1, marvelous rate performance of 81.82% (2577.3 F g-1 at 30 A g-1) and long cycle life (maintaining 96.74% after 10,000 cycles). What is more, the assembled CuCo2O4@CoS-Cu/Co-MOF//CNTs device has an energy density of 73.19 Wh kg-1 when the power density is 849.94 W kg-1. It has unexpected application prospects.
Collapse
Affiliation(s)
- Xiaomin Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Shunchang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Yunyun Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Long Teng Road 333, 201620 Shanghai, PR China
| | - Xing Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Jibo Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
| | - Haishan Cong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Hualin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China; College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Long Teng Road 333, 201620 Shanghai, PR China.
| |
Collapse
|
15
|
Li S, Lin J, Xiong W, Guo X, Wu D, Zhang Q, Zhu QL, Zhang L. Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213872] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Tian D, Ao Y, Li W, Xu J, Wang C. General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2021; 603:199-209. [PMID: 34186398 DOI: 10.1016/j.jcis.2021.05.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Metal-organic framework (MOF)-based electrode materials have become a hot subject for supercapaitors. Herein, Ni-MOFs grown on Co nanoparticles modified carbon nanofibers (CNFs) (C-Co@MOF) are prepared via a facile process. Interestingly, the presence of Co nanoparticles in CNFs not only boosts the hybridization of CNF and MOFs, but also releases Co ions to participate in the growth of MOF, leading to a favorable electrochemical behavior. In detail, the specific capacitance of C-Co@MOF reaches 1201.6 F g-1 that exceeds those of C-M@MOFs (M = Ni, V, Mo, Mn, Fe, Cu and Zn) and CNF@MOF. More importantly, an asymmetric solid-state supercapacitor is assembled using C-Co@MOF and nitrogen-doped carbon nanotubes derived from polyaniline as positive and negative electrode materials, respectively, representing a high energy density of 37.0 Wh kg-1 and outstanding durability. This work highlights the superiority of electrospun CNFs modified by metal nanoparticles for the growth of MOF, showing great potential for electrochemical energy storage and conversion applications.
Collapse
Affiliation(s)
- Di Tian
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, NO. 300 Bailongsi, Kunming 650224, PR China
| | - Yue Ao
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, NO. 2699 Qianjin Street, Changchun 130012, PR China
| | - Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, NO. 2699 Qianjin Street, Changchun 130012, PR China
| | - Jiaqi Xu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, NO. 2699 Qianjin Street, Changchun 130012, PR China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, NO. 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
17
|
Khuntia H, Bhavani KS, Anusha T, Trinadh T, Stuparu MC, Brahman PK. Synthesis and characterization of corannulene-metal-organic framework support material for palladium catalyst: An excellent anode material for accelerated methanol oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Naskar P, Chakraborty P, Kundu D, Maiti A, Biswas B, Banerjee A. Envisaging Future Energy Storage Materials for Supercapacitors: An Ensemble of Preliminary Attempts. ChemistrySelect 2021. [DOI: 10.1002/slct.202100049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pappu Naskar
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Priyanka Chakraborty
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Debojyoti Kundu
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Apurba Maiti
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Biplab Biswas
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Anjan Banerjee
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| |
Collapse
|
19
|
Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213441] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Three isostructural Zn/Ni nitro-containing metal-organic frameworks for supercapacitor. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Chi Y, Yang W, Xing Y, Li Y, Pang H, Xu Q. Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. NANOSCALE 2020; 12:10685-10692. [PMID: 32374311 DOI: 10.1039/d0nr02016h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nickel-cobalt organic framework (denoted as NiCo-MOF) nanosheet assemblies are prepared through a controllable one-pot hydrothermal synthesis procedure at 150 °C. The as-prepared samples are directly employed as electrode materials for electrochemical energy storage (EES), and exhibit excellent electrochemical performance. Among these samples, NiCo-MOF-1 displays a high capacity of 100.18 mA h g-1 (901.60 F g-1), and obtains a capacity retention of 81.00% over 3000 cycles at 5 A g-1. Likewise, in an aqueous device, NiCo-MOF-1//AC delivers a discharge capacity of 83.75 mA h g-1, and also exhibits a good cycling life (74.14% retention after 3000 cycles). These results demonstrate that multilayer NiCo-MOF nanosheet assemblies are potential electrode materials for EES.
Collapse
Affiliation(s)
- Yao Chi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.
| | - Wenping Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.
| | - Yichen Xing
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.
| | - Yan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
22
|
Ling Y, Chen H, Zhou J, Tao K, Zhao S, Yu X, Han L. Metal-Organosulfide Coordination Polymer Nanosheet Array as a Battery-Type Electrode for an Asymmetric Supercapacitor. Inorg Chem 2020; 59:7360-7369. [PMID: 32362120 DOI: 10.1021/acs.inorgchem.0c00916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal-organosulfide coordination polymers (MOSCPs) are important functional materials with attractive application prospects. Herein a two-dimensional structural MOSCP was fabricated on nickel foam with nanosheet array morphology. When as the binder-free battery-type electrode for a supercapacitor, the as-prepared Co-based MOSCP showed high specific capacitance (759 F g-1/379.5 C g-1/105.4 mAh g-1 at 0.5 A g-1), excellent rate performance (58.8% after the current density increased 20 times), and good cycle stability (73.4% after 5000 cycles). In addition, a maximum energy density of 31.97 Wh kg-1 was obtained at a power density of 375.01 W kg-1 in the assembled asymmetric supercapacitor device. These results indicated that this work would open up a new path to design and prepare the battery-type electrode for a supercapacitor by exploring nanoscale MOSCP materials.
Collapse
Affiliation(s)
- Yuanyuan Ling
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongmei Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiaojiao Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kai Tao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shihang Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xianbo Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lei Han
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
23
|
Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Tian D, Song N, Zhong M, Lu X, Wang C. Bimetallic MOF Nanosheets Decorated on Electrospun Nanofibers for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1280-1291. [PMID: 31834776 DOI: 10.1021/acsami.9b16420] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rational design of metal-organic framework (MOF)-based materials with a huge specific surface area, high redox activity, and favorable conductivity is currently a hot subject for their potential usage in supercapacitor electrodes. Herein, novel bimetallic MOFs with a flowerlike nanosheet structure grown on the electrospun nanofibers (PPNF@M-Ni MOF, M = Co, Zn, Cu, Fe) have been prepared by controlling the incorporation of various types of metal ions, which display superior electrochemical performance. For example, PPNF@Co-Ni MOF possesses a large specific capacitance of 1096.2 F g-1 (specific capacity of 548.1 C g-1) at 1 A g-1 and excellent rate performance. In addition, an asymmetric solid-state device composed of PPNF@Co-Ni MOF (positive materials) and KOH-activated carbon nanofibers embedded with reduced graphene oxide (negative materials) reaches a maximum energy density of 93.6 Wh kg-1 at the power density of 1600.0 W kg-1 and long cycling life. This work may greatly advance the research toward the design of supported MOF-based electrode materials for a promising prospect in energy conversion and storage.
Collapse
Affiliation(s)
- Di Tian
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Na Song
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| |
Collapse
|
25
|
Zhu S, Xie A, Tao X, Zhang J, Wei B, Liu Z, Tao Y, Luo S. Enhanced electrocatalytic performance of CoCu-MOF/polyaniline for glycerol oxidation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Zhao J, Liu X, Wu Y, Li DS, Zhang Q. Surfactants as promising media in the field of metal-organic frameworks. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Rajpurohit AS, Punde NS, Srivastava AK. A dual metal organic framework based on copper-iron clusters integrated sulphur doped graphene as a porous material for supercapacitor with remarkable performance characteristics. J Colloid Interface Sci 2019; 553:328-340. [PMID: 31220707 DOI: 10.1016/j.jcis.2019.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
Herein, a novel bimetallic metal organic framework (MOF) using copper and iron as the metal centers with 1,3,5-tricarboxylic acid as a ligand (CuFeBTC) and its composite with sulphur doped graphene (S-GNS) have been investigated for supercapacitive performance. The synthesis of materials has been carried out using a facile wet chemical route. The physicochemical characterization of the materials employing various structural and surface techniques has been performed which confirms the successful formation of nanocomposite. The capacitive behavior of CuFeBTC, S-GNS and CuFeBTC/S-GNS has been systematically examined using 1 M Na2SO4 as an electrolyte in a three and two electrode assembly. The electrochemical studies reveal that CuFeBTC/S-GNS electrode demonstrates highest specific capacitance of 1164.3 F g-1 at 0.5 A g-1 with suffice rate capability as compared to CuFeBTC and S-GNS electrodes. Moreover, a symmetric supercapacitor is configured using the CuFeBTC/S-GNS nanocomposite electrodes which deliver remarkable energy and power output of 96.57 Wh kg-1 and 1595.12 W kg-1 at an operating voltage of 1.8 V. The as-fabricated symmetric supercapacitor displays competent energy storage retention of 50.2 Wh kg-1 even at current density of 20.0 A g-1 with high power density 26973.13 W kg-1. These deliverables epitomize the latest performance record of bimetallic MOFs based supercapacitors, suggesting that CuFeBTC/S-GNS is a promising active material for high performance electrochemical energy storage applications.
Collapse
Affiliation(s)
- Anuja S Rajpurohit
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400 098, India
| | - Ninad S Punde
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400 098, India
| | - Ashwini K Srivastava
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400 098, India.
| |
Collapse
|
28
|
Zhang Y, Yue Q, Zagho MM, Zhang J, Elzatahry AA, Jiang Y, Deng Y. Core-Shell Magnetic Mesoporous Silica Microspheres with Large Mesopores for Enzyme Immobilization in Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10356-10363. [PMID: 30789700 DOI: 10.1021/acsami.8b18721] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic mesoporous silica microspheres with core-shell structure and large pores are highly desired in macromolecules delivery and biocatalysis, biospeparation, and adsorption. In this work, a controllable solvent evaporation induced solution-phase interface co-assembly approach was developed to synthesize core-shell structural magnetic mesoporous silica microspheres with ultralarge mesopore size (denoted as LP-MMS). The synthesis was achieved by employing large-molecular-weight amphiphilic block copolymers poly(ethylene oxide)- block-poly(methyl methacrylate) (PEO- b-PMMA) and small surfactant cetyltrimethylammonium bromide as co-templates, which can co-assemble with silica source in tetrahydrofuran/water solutions. The obtained LP-MMS microspheres possess uniform rasberry-like morphology with a diameter of 600 nm, large primary spherical mesopores (ca. 36 nm), large specific surface area (348 m2/g), high specific pore volume (0.59 cm3/g), and fast magnetic responsivity with high magnetization (15.9 emu/g). The mesopore morphology can be transformed from spherical to cylindrical through introducing a shearing force during the interfacial co-assembly in the synthesis system. The designed LP-MMS microspheres turn out to be good carriers for enzyme (trypsin) immobilization with a high loading capacity of 80 μg/mg and demonstrate excellent biocatalysis efficiency up to 99.1% for protein digestion within 30 min and good recycling stability with negligible decay in digestion efficiency after reuse for five times.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM , Fudan University , Shanghai 200433 , China
- School of Electronic and Computer Engineering, Shenzhen Graduate School , Peking University , Shenzhen 518055 , China
| | - Qin Yue
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM , Fudan University , Shanghai 200433 , China
- Institute of Fundamental and Frontier Sciences , University of Electronic Science and Technology of China , Chengdu 610051 , China
| | - Moustafa M Zagho
- Materials Science and Technology Program, College of Arts and Sciences , Qatar University , P.O. Box 2713, Doha , Qatar
| | - Jiajie Zhang
- Department of Pancreatic Surgery, Nephrology & Radiology , Huashan Hospital, Fudan University , Shanghai 200040 , China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences , Qatar University , P.O. Box 2713, Doha , Qatar
| | - Yongjian Jiang
- Department of Pancreatic Surgery, Nephrology & Radiology , Huashan Hospital, Fudan University , Shanghai 200040 , China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM , Fudan University , Shanghai 200433 , China
| |
Collapse
|
29
|
Zhao S, Zeng L, Cheng G, Yu L, Zeng H. Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|