1
|
Zeng J, Zhao Q, Xiong Z, Zhang S, Deng S, Liu D, Zhang X. Surface functionalization of two-dimensional nanomaterials beyond graphene: Applications and ecotoxicity. Adv Colloid Interface Sci 2025; 336:103357. [PMID: 39612722 DOI: 10.1016/j.cis.2024.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Two dimensional (2D) nanomaterials have emerged as promising candidates in nanotechnology due to their excellent physical, chemical, and electronic properties. However, they also pose challenges such as environmental instability and low biosafety. To address these issues, researchers have been exploring various surface functionalization methods to enhance the performance of 2D nanomaterials in practical applications. Moreover, when released into the environment, these 2D nanomaterials may interact with natural organic matter (NOM). Both intentional surface modification and unintentional environmental corona formation can alter the structure and physicochemical properties of 2D nanomaterials, potentially affecting their ecological toxicity. This review provides a comprehensive overview of covalent functionalization strategies and non-covalent interactions of 2D nanomaterials beyond graphene with organic substances, examining the resultant changes in material properties after modification. Covalent functionalization methods discussed include nucleophilic substitution reactions, addition reactions, condensation, and coordination. Non-covalent interactions are classified by substance type, covering interactions with NOM, in vivo biomolecules, and synthetic compounds. In addition, the review delves into the effects of surface functionalization on the toxicity of 2D nanomaterials to bacteria and algae. This discussion contributes to a foundational understanding for assessing the potential ecological risks associated with 2D nanomaterials.
Collapse
Affiliation(s)
- Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
2
|
Ren H, Zeng H, Sun C, Yang J, Luo X, Li J, Li B, Sheng W. Polymer Brush-Functionalized MoS 2 as a Water-Based Lubricant Additive. Macromol Rapid Commun 2024:e2400793. [PMID: 39714108 DOI: 10.1002/marc.202400793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Indexed: 12/24/2024]
Abstract
Water-based lubricants have the advantages of low cost, easy cleaning, and environmental friendliness, and are suitable for various lubrication applications. However, the limited tribological properties of pure water-based lubricants restrict their use. To improve these properties, water-based lubrication additives can be employed. Molybdenum disulfide (MoS2) is widely used in tribology because of its stability, corrosion resistance, and wear resistance, but it has poor dispersion in water. To address this, MoS2 functionalized with poly(3-sulfopropyl methacrylate potassium salt) (MoS2+PSPMA) is successfully prepared by grafting polymer brushes onto MoS2 using ultraviolet light. The results show that MoS2+PSPMA exhibits significantly better dispersion stability in water compared to unmodified MoS2. Additionally, MoS2+PSPMA demonstrates superior tribological properties as a water-based lubrication additive. During reciprocating friction, MoS2+PSPMA disperses effectively in water, forming a protective film on the wear surface that reduces friction. As an additive, MoS2+PSPMA indicates good dispersion and a low friction coefficient in water, positioning it as a promising candidate for future water-based lubricants.
Collapse
Affiliation(s)
- Haohao Ren
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730124, China
| | - Huayi Zeng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chufeng Sun
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730124, China
| | - Jianghong Yang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730124, China
| | - Xingping Luo
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730124, China
| | - Jia Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730124, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong, 264000, China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong, 264000, China
| |
Collapse
|
3
|
Wang C, Zhao H. Polymer Brushes and Surface Nanostructures: Molecular Design, Precise Synthesis, and Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2439-2464. [PMID: 38279930 DOI: 10.1021/acs.langmuir.3c02813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
For over two decades, polymer brushes have found wide applications in industry and scientific research. Now, polymer brush research has been a significant research focus in the community of polymer science. In this review paper, we give an introduction to the synthesis, self-assembly, and applications of one-dimensional (1D) polymer brushes on polymer backbones, two-dimensional (2D) polymer brushes on flat surfaces, and three-dimensional (3D) polymer brushes on spherical particles. Examples of the synthesis of polymer brushes on different substrates are provided. Studies on the formation of the surface nanostructures on solid surfaces are also reviewed in this article. Multicomponent polymer brushes on solid surfaces are able to self-assemble into surface micelles (s-micelles). If the s-micelles are linked to the substrates through cleavable linkages, the s-micelles can be cleaved from the substrates, and the cleaved s-micelles are able to self-assemble into hierarchical structures. The formation of the surface nanostructures by coassembly of polymer brushes and "free" polymer chains (coassembly approach) or polymerization-induced surface self-assembly approach, is discussed. The applications of the polymer brushes in colloid and biomedical science are summarized. Finally, perspectives on the development of polymer brushes are offered in this article.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
4
|
Huang Q, Yang M, Rani KK, Wang L, Wang R, Liu X, Huang D, Yang Z, Devasenathipathy R, Chen DH, Fan Y, Chen W. Sheet-Isolated MoS 2 Used for Dispersing Pt Nanoparticles and its Application in Methanol Fuel Cells. Chemistry 2024; 30:e202302934. [PMID: 37842799 DOI: 10.1002/chem.202302934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
It is highly challenging to activate the basal plane and minimize the π-π stacking of MoS2 sheets, thus enhancing its catalytic performance. Here, we display an approach for making well-dispersed MoS2 . By using the N-doped multi-walled carbon nanotubes (NMWCNTs) as an isolation unit, the aggregation of MoS2 sheets was effectively reduced, favoring the dispersion of Pt nanoparticles (noted as Pt/NMWCNTs-isolated-MoS2 ). Excellent bifunctional catalytic performance for methanol oxidation and oxygen reduction reaction (MOR/ORR) were demonstrated by the produced Pt/NMWCNTs-isolated-MoS2 . In comparison to Pt nanoparticles supported on MoS2 (Pt/MoS2 ), the MOR activity (2314.14 mA mgpt -1 ) and stability (317.69 mA mgpt -1 after 2 h of operation) on Pt/NMWCNTs-isolatedMoS2 were 24 and 232 times higher, respectively. As for ORR, Pt/NMWCNTs-isolated-MoS2 holds large half-wave potential (0.88 V) and high stability (92.71 % after 22 h of operation). This work presents a tactic for activating the basal planes and reducing the π-π stacking of 2D materials to satisfy their applications in electrocatalysis. In addition, the proposed sheet-isolation method can be used for fabricating other 2D materials to promote the dispersion of nanoparticles, which assist its application in other fields of energy as well as the environment.
Collapse
Affiliation(s)
- Qiulan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Mengping Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Karuppasamy Kohila Rani
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Limin Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ruixiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaotian Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dujuan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhongyun Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Du-Hong Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
5
|
Kopka B, Kost B, Basko M. Poly(2-isopropenyl-2-oxazoline) as a reactive polymer for materials development. Polym Chem 2022. [DOI: 10.1039/d2py00660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(2-isopropenyl-2-oxazoline) has attracted growing interest as a reactive polymer that can be used as a starting material for the construction of more complex structures.
Collapse
Affiliation(s)
- Bartosz Kopka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Malgorzata Basko
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
6
|
Yin L, Liu L, Zhang N. Brush-like polymers: design, synthesis and applications. Chem Commun (Camb) 2021; 57:10484-10499. [PMID: 34550120 DOI: 10.1039/d1cc03940g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the development of controlled polymerisation, almost all polymerisation strategies have been successfully transplanted to surface-initiated polymerisation. The resulting polymer brushes have emerged as an effective tool for surface functionalization and modulation of the surface properties of materials. To meet various demands it is possible to tailor a material surface with polymer brushes that have diverse dimensionalities, morphologies and compositions. The crowded environment within polymer brushes as well as the stretched conformation of polymer chains sometimes provide unique physicochemical properties, which lead to the delicate creation of inorganic-organic hybridised nanostructures, anti-fouling coatings, biomedical carriers, and materials for use in lubrication, photonics and energy storage. So far, challenges remain in the high-precision synthesis and topological control needed to realize extended applications of polymer brushes. In this Feature Article, we highlight the topology, potential application prospects and various synthetic protocols, particularly for recently established methods, for the efficient synthesis of polymer brushes, as well as their benefits and limitations.
Collapse
Affiliation(s)
- Liying Yin
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Lin Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Ning Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| |
Collapse
|
7
|
Lin X, Wang J, Chu Z, Liu D, Guo T, Yang L, Huang Z, Mu S, Li S. The optimization of hydrothermal process of MoS2 nanosheets and their good microwave absorption performances. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhang H, He J, Zhai C, Zhu M. 2D Bi2WO6/MoS2 as a new photo-activated carrier for boosting electrocatalytic methanol oxidation with visible light illumination. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.021] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Sheng W, Amin I, Neumann C, Dong R, Zhang T, Wegener E, Chen WL, Förster P, Tran HQ, Löffler M, Winter A, Rodriguez RD, Zschech E, Ober CK, Feng X, Turchanin A, Jordan R. Polymer Brushes on Hexagonal Boron Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805228. [PMID: 30932320 DOI: 10.1002/smll.201805228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Direct covalent functionalization of large-area single-layer hexagonal boron nitride (hBN) with various polymer brushes under mild conditions is presented. The photopolymerization of vinyl monomers results in the formation of thick and homogeneous (micropatterned, gradient) polymer brushes covalently bound to hBN. The brush layer mechanically and chemically stabilizes the material and allows facile handling as well as long-term use in water splitting hydrogen evolution reactions.
Collapse
Affiliation(s)
- Wenbo Sheng
- Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Ihsan Amin
- Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
- Junior Research Group Biosensing Surfaces, Leibniz Insitute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
- Department of Materials Science and Engineering, Cornell University, 310 Bard Hall, Ithaca, NY, 14853, USA
| | - Christof Neumann
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Center for Energy and Environmental Chemistry Jena (CEEC Jena), Lessingstr. 10, 07743, Jena, Germany
| | - Renhao Dong
- Chair of Molecular Functional Materials, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Tao Zhang
- Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
- Chair of Molecular Functional Materials, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Erik Wegener
- Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Wei-Liang Chen
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Paul Förster
- Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Hai Quang Tran
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Markus Löffler
- Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden (CfAED), Technische Universität Dresden, Helmholtzstr. 18, 01187, Dresden, Germany
| | - Andreas Winter
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Center for Energy and Environmental Chemistry Jena (CEEC Jena), Lessingstr. 10, 07743, Jena, Germany
| | - Raul D Rodriguez
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050, Tomsk, Russia
| | - Ehrenfried Zschech
- Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden (CfAED), Technische Universität Dresden, Helmholtzstr. 18, 01187, Dresden, Germany
- Department Head Microelectronic Materials and Nanoanalysis, Fraunhofer Institute for Ceramic Technologies and Systems, Maria Reiche Str. 2, 01099, Dresden, Germany
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, 310 Bard Hall, Ithaca, NY, 14853, USA
| | - Xinliang Feng
- Chair of Molecular Functional Materials, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Center for Energy and Environmental Chemistry Jena (CEEC Jena), Lessingstr. 10, 07743, Jena, Germany
| | - Rainer Jordan
- Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| |
Collapse
|