1
|
Chen T, Li C, Huang H, Zhao Y, Xiang H, Wang D, Feng Y, Yang S, Chen S. Identification of key physicochemical properties and volatile flavor compounds for the sensory formation of roasted tilapia. Food Chem 2024; 460:140636. [PMID: 39094344 DOI: 10.1016/j.foodchem.2024.140636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Tilapia is suitable for industrial roasting production because of its good flavor and processing adaptability. In this study, the key physicochemical properties and volatile compounds for sensory formation of roasted tilapia were identified after roasting condition optimization. The highest sensory score was obtained at 215 °C, 45 min, and 4% oil. During roasting, the a*, b*, hardness, chewiness, and oxidation of proteins and lipids significantly increased, the moisture content decreased, and the myofibrillar protein aggregation was observed by scanning electron microscope. After identification and quantification by headspace-gas chromatography-ion mobility spectrometry, 10 compounds with odor active value ≥1 were selected as characteristic flavor compounds. The correlation network indicated that the sensory formation mainly resulted from Maillard reaction, myofibrillar protein aggregation, and improvement of pleasant volatile flavor compounds induced by oxidation of proteins and lipids and water loss. This study provides an important theoretical basis and technical support for roasted tilapia production.
Collapse
Affiliation(s)
- Tianyu Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yang Feng
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shaoling Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
2
|
Wu W, Ba M, Zhang W, Zhang H, Zhao N, Liu Y, Wang X, Cai Z, Sun T. The Preparation of Novel Amino Acid Imidazole Ionic Liquids and Their Application as Stationary Phase for Capillary Gas Chromatographic Separations. ChemistrySelect 2023. [DOI: 10.1002/slct.202204289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Weilong Wu
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P.R. China
| | - Wei Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P.R. China
| | - Huike Zhang
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Niu Zhao
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Yiyi Liu
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Xinxin Wang
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P.R. China
| | - Tao Sun
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
- Hebei Key Laboratory of Heterocyclic Compounds Handan University Handan 056005 P.R. China
| |
Collapse
|
3
|
Tang B, Wang W, Hou H, Liu Y, Liu Z, Geng L, Sun L, Luo A. A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Chen J, Tao L, Zhang T, Zhang J, Wu T, Luan D, Ni L, Wang X, Zhong J. Effect of four types of thermal processing methods on the aroma profiles of acidity regulator-treated tilapia muscles using E-nose, HS-SPME-GC-MS, and HS-GC-IMS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111585] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Liu H, Jin P, Zhu F, Nie L, Qiu H. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116132] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
He Y, Qi M. A novel column modification approach for capillary gas chromatography: combination with a triptycene-based stationary phase achieves high separation performance and inertness. NEW J CHEM 2021. [DOI: 10.1039/d1nj00571e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integration of the novel column modification approach with a triptycene-based stationary phase achieves high-resolution performance and inertness towards acids/bases and isomers for capillary GC analysis.
Collapse
Affiliation(s)
- Yongrui He
- Key Laboratory of Cluster Science
- Ministry of Education of China
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Meiling Qi
- Key Laboratory of Cluster Science
- Ministry of Education of China
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| |
Collapse
|
10
|
Chen J, Gong Z, Tang W, Row KH, Qiu H. Carbon dots in sample preparation and chromatographic separation: Recent advances and future prospects. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116135] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Triptycene-based dicationic guanidinium ionic liquid: A novel stationary phase of high selectivity towards a wide range of positional and structural isomers. J Chromatogr A 2020; 1621:461084. [DOI: 10.1016/j.chroma.2020.461084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 11/19/2022]
|
12
|
Yang Y, Qi M, Wang J. Tetraphenylethylene-functionalized hexaphenylbenzene with unique conformation-driven selectivity for gas chromatographic separations. NEW J CHEM 2020. [DOI: 10.1039/c9nj05545b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tetraphenylethylene-functionalized hexaphenylbenzene composed of a neat aromatic hydrocarbon with unique conformation-driven selectivity for gas chromatographic separations.
Collapse
Affiliation(s)
- Yinhui Yang
- Key Laboratory of Cluster Science
- Ministry of Education of China
- School of Chemistry and Chemical Engineering and Analysis & Testing Center
- Beijing Institute of Technology
- Beijing
| | - Meiling Qi
- Key Laboratory of Cluster Science
- Ministry of Education of China
- School of Chemistry and Chemical Engineering and Analysis & Testing Center
- Beijing Institute of Technology
- Beijing
| | - Jinliang Wang
- Key Laboratory of Cluster Science
- Ministry of Education of China
- School of Chemistry and Chemical Engineering and Analysis & Testing Center
- Beijing Institute of Technology
- Beijing
| |
Collapse
|
13
|
Xiong X, Qi M. Adenine-functionalized polypropylene glycol: A novel stationary phase for gas chromatography offering good inertness for acids and bases combined with a unique selectivity. J Chromatogr A 2019; 1612:460627. [PMID: 31668867 DOI: 10.1016/j.chroma.2019.460627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
This work presents the investigation of utilizing adenine-functionalized polypropylene glycol (APPG) for capillary gas chromatographic separations. The statically coated APPG column (0.25 mm i.d.) showed moderate polarity and high column efficiencies of 4660 plates/m and 4376 plates/m determined by n-octanol and naphthalene, respectively. Remarkably, the APPG column baseline resolved all the components of the Grob test mixture and displayed good peak shapes for some stringent analytes that are prone to peak tailing or severe adsorption. Also, it achieved complete separation of dimethylaniline isomers, which are difficult to be resolved due to their high resemblance in structures and properties. The above results demonstrate the high selectivity and inertness of the APPG column and its distinct advantages over the polypropylene glycol (PPG) column and commercial polyethylene glycol (PEG) column. In addition, its separation performance has good repeatability with the RSD values on retention times below 0.05% for run-to-run, 0.11-0.12% for day-to-day and 1.7-1.9% for column-to-column, respectively. Further, the APPG column was applied to determination of isomer impurities in commercial dimethylaniline products and to determination of the additives of anilines and phenols in a hair-dye product, proving its great potential for practical GC analysis.
Collapse
Affiliation(s)
- Xue Xiong
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, and Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Meiling Qi
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, and Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
14
|
Chen J, Huang Y, Wei X, Lei X, Zhao L, Guan M, Qiu H. Covalent organic nanospheres: facile preparation and application in high-resolution gas chromatographic separation. Chem Commun (Camb) 2019; 55:10908-10911. [DOI: 10.1039/c9cc05307g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A facile and rapid room-temperature solution-phase strategy was used to fabricate covalent organic nanospheres with uniform morphology and outstanding thermal/solvent stability for GC separation.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yanni Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xin Wei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xiaoqiang Lei
- Lanzhou Donglilong Information Technology Co., Ltd
- Lanzhou 730000
- China
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Ming Guan
- Laboratory on Pollution Monitoring and Control
- College of Chemistry and Chemical Engineering
- Xinjiang Normal University
- Urumqi 830054
- China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|