1
|
Ning X, Zhu X, Wang Y, Yang J. Recent advances in carbon monoxide-releasing nanomaterials. Bioact Mater 2024; 37:30-50. [PMID: 38515608 PMCID: PMC10955104 DOI: 10.1016/j.bioactmat.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
As an endogenous signaling molecule, carbon monoxide (CO) has emerged as an increasingly promising option regarding as gas therapy due to its positive pharmacological effects in various diseases. Owing to the gaseous nature and potential toxicity, it is particularly important to modulate the CO release dosages and targeted locations to elucidate the biological mechanisms of CO and facilitate its clinical applications. Based on these, diverse CO-releasing molecules (CORMs) have been developed for controlled release of CO in biological systems. However, practical applications of these CORMs are limited by several disadvantages including low stability, poor solubility, weak releasing controllability, random diffusion, and potential toxicity. In light of rapid developments and diverse advantages of nanomedicine, abundant nanomaterials releasing CO in controlled ways have been developed for therapeutic purposes across various diseases. Due to their nanoscale sizes, diversified compositions and modified surfaces, vast CO-releasing nanomaterials (CORNMs) have been constructed and exhibited controlled CO release in specific locations under various stimuli with better pharmacokinetics and pharmacodynamics. In this review, we present the recent progress in CORNMs according to their compositions. Following a concise introduction to CO therapy, CORMs and CORNMs, the representative research progress of CORNMs constructed from organic nanostructures, hybrid nanomaterials, inorganic nanomaterials, and nanocomposites is elaborated. The basic properties of these CORNMs, such as active components, CO releasing mechanisms, detection methods, and therapeutic applications, are discussed in detail and listed in a table. Finally, we explore and discuss the prospects and challenges associated with utilizing nanomaterials for biological CO release.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinghui Yang
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
2
|
Huang J, Guo W, Wu W, Yin F, Wang H, Tao C, Zhou H, Hu W. Palladium-Catalyzed Dual C-H Carbonylation of Diarylamines Leading to Diversified Acridones under CO-Free Conditions. J Org Chem 2024; 89:2014-2023. [PMID: 38241168 DOI: 10.1021/acs.joc.3c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
A Pd-catalyzed dual C-H carbonylation of commercially available diarylamines using Co2(CO)8 as a safe CO source has been developed. This methodology provides a facile approach for the synthesis of diversified acridones in moderate to good yields. The protocol features good functional group compatibility, operational safety, easy scale-up, and versatile transformations.
Collapse
Affiliation(s)
- Jiali Huang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Wenting Guo
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Wenting Wu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Fujun Yin
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Huiyan Wang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Chuanzhou Tao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Hualan Zhou
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Weiming Hu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| |
Collapse
|
3
|
Costa AL, Monteiro RP, Nunes Barradas PD, Ferreira SCR, Cunha C, Gomes AC, Gonçalves IS, Seixas de Melo JS, Pillinger M. Enhanced thermal and photo-stability of a para-substituted dicumyl ketone intercalated in a layered double hydroxide. Front Chem 2022; 10:1004586. [DOI: 10.3389/fchem.2022.1004586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
A ketodiacid, 4,4′-dicarboxylate-dicumyl ketone (3), has been intercalated into a Zn, Al layered double hydroxide (LDH) by a coprecipitation synthesis strategy. The structure and chemical composition of the resultant hybrid material (LDH-KDA3) were characterized by powder X-ray diffraction (PXRD), FT-IR, FT-Raman and solid-state 13C{1H} NMR spectroscopies, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), and elemental analysis (CHN). PXRD showed that the dicarboxylate guest molecules assembled into a monolayer to give a basal spacing of 18.0 Å. TGA revealed that the organic guest starts to decompose at a significantly higher temperature (ca. 330°C) than that determined for the free ketodiacid (ca. 230°C). Photochemical experiments were performed to probe the photoreactivity of the ketoacid in the crystalline state, in solution, and as a guest embedded within the photochemically-inert LDH host. Irradiation of the bulk crystalline ketoacid results in photodecarbonylation and the exclusive formation of the radical-radical combination product. Solution studies employing the standard myoglobin (Mb) assay for quantification of released CO showed that the ketoacid behaved as a photoactivatable CO-releasing molecule for transfer of CO to heme proteins, although the photoreactivity was low. No photoinduced release of CO was found for the LDH system, indicating that molecular confinement enhanced the photo-stability of the hexasubstituted ketone. To better understand the behavior of 3 under irradiation, a more comprehensive study, involving excitation of this compound in DMSO-d6 followed by 1H NMR, UV-Vis and fluorescence spectroscopy, was undertaken and further rationalized with the help of time-dependent density functional theory (TDDFT) electronic quantum calculations. The photophysical study showed the formation of a less emissive compound (or compounds). New signals in the 1H NMR spectra were attributed to photoproducts obtained via Norrish type I α-cleavage decarbonylation and Norrish type II (followed by CH3 migration) pathways. TDDFT calculations predicted that the formation of a keto-enol system (via a CH3 migration step in the type II pathway) was highly favorable and consistent with the observed spectral data.
Collapse
|
4
|
Wen Q, Cai Q, Fu P, Chang D, Xu X, Wen TJ, Wu GP, Zhu W, Wan LS, Zhang C, Zhang XH, Jin Q, Wu ZL, Gao C, Zhang H, Huang N, Li CZ, Li H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Lehr M, Neumann T, Näther C, McConnell AJ. M-CPOnes: transition metal complexes with cyclopropenone-based ligands for light-triggered carbon monoxide release. Dalton Trans 2022; 51:6936-6943. [PMID: 35448899 DOI: 10.1039/d2dt00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of CO-releasing molecules, M-CPOnes, was prepared combining cyclopropenone-based ligands for CO release with the modular scaffold of transition metal complexes. In proof-of-concept studies, M-CPOnes based on ZnII, FeII and CoII are stable in the dark but undergo light-triggered CO release with the cyclopropenone substituents and metal ions enabling tuning of the photophysical properties. Furthermore, the choice of metal allows the use of different spectroscopic methods to monitor photodecarbonylation from fluorescence spectroscopy to UV/vis spectroscopy and paramagnetic NMR spectroscopy. The modularity of M-CPOnes from the metal ion to the cyclopropenone substitution and potential for further functionalisation of the ligand make M-CPOnes appealing for tailored functionality in applications.
Collapse
Affiliation(s)
- Marc Lehr
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| | - Tjorge Neumann
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Anna J McConnell
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| |
Collapse
|
6
|
Sun Y, Neary WJ, Burke ZP, Qian H, Zhu L, Moore JS. Mechanically Triggered Carbon Monoxide Release with Turn-On Aggregation-Induced Emission. J Am Chem Soc 2022; 144:1125-1129. [PMID: 35019277 DOI: 10.1021/jacs.1c12108] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymers that release functional small molecules under mechanical stress potentially serve as next-generation materials for catalysis, sensing, and mechanochemical dynamic therapy. To further expand the function of mechanoresponsive materials, the discovery of chemistries capable of small molecule release are highly desirable. In this report, we detail a nonscissile bifunctional mechanophore (i.e., dual mechano-activated properties) based on a unique mechanochemical reaction involving norborn-2-en-7-one (NEO). One property is the release of carbon monoxide (CO) upon pulsed solution ultrasonication. A release efficiency of 58% is observed at high molecular weights (Mn = 158.8 kDa), equating to ∼154 molecules of CO released per chain. The second property is the bright cyan emission from the macromolecular product in its aggregated state, resulting in a turn-on fluorescence readout coincident with CO release. This report not only demonstrates a unique strategy for the release of small molecules in a nonscissile way but also guides future designs of force-responsive aggregation-induced emission (AIE) luminogens.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - William J Neary
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Zachary P Burke
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Hai Qian
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Liu J, Tang Q, Wang Y, Zhang HL, Ren B, Yang SP, Liu JG. Targeted carbon monoxide delivery combined with chemodynamic, chemotherapeutic and photothermal therapies for enhanced antitumor efficacy. NEW J CHEM 2022. [DOI: 10.1039/d2nj01088g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polydopamine-coated hollow mesoporous copper sulfide loaded with DHA and CO-releasing molecules selectively delivered DHA and CO to tumor cells under 808 nm light irradiation, demonstrating multimodal synergistic antitumor efficacy.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shi-Ping Yang
- Key Lab of Resource Chemistry of Ministry of Education & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Nijem S, Song Y, Schwarz R, Diesendruck CE. Flex-activated CO mechanochemical production for mechanical damage detection. Polym Chem 2022. [DOI: 10.1039/d2py00503d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New flex-activated mechanophore allows for mechanical damage in polymers using a simple household CO detectors, in addition to the formation of an extended and fluorescent π system.
Collapse
Affiliation(s)
- Sally Nijem
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
| | - Ying Song
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
- Department of Chemistry, Nanning Normal University, 530001, Nanning, Guangxi, China
| | - Rony Schwarz
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
| |
Collapse
|
9
|
Zhou HQ, Gu XW, Zhou XH, Li L, Ye F, Yin GW, Xu Z, Xu LW. Enantioselective palladium-catalyzed C(sp 2)-C(sp 2) σ bond activation of cyclopropenones by merging desymmetrization and (3 + 2) spiroannulation with cyclic 1,3-diketones. Chem Sci 2021; 12:13737-13743. [PMID: 34760158 PMCID: PMC8549799 DOI: 10.1039/d1sc04558j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
Catalytic asymmetric variants for functional group transformations based on carbon–carbon bond activation still remain elusive. Herein we present an unprecedented palladium-catalyzed (3 + 2) spiro-annulation merging C(sp2)–C(sp2) σ bond activation and click desymmetrization to form synthetically versatile and value-added oxaspiro products. The operationally straightforward and enantioselective palladium-catalyzed atom-economic annulation process exploits a TADDOL-derived bulky P-ligand bearing a large cavity to control enantioselective spiro-annulation that converts cyclopropenones and cyclic 1,3-diketones into chiral oxaspiro cyclopentenone–lactone scaffolds with good diastereo- and enantio-selectivity. The click-like reaction is a successful methodology with a facile construction of two vicinal carbon quaternary stereocenters and can be used to deliver additional stereocenters during late-state functionalization for the synthesis of highly functionalized or more complex molecules. An unprecedented palladium-catalyzed (3 + 2) spiro-annulation merging C–C bond activation and desymmetrization was developed for the enantioselective construction of synthetically versatile and value-added oxaspiro products with up to 95% ee.![]()
Collapse
Affiliation(s)
- Han-Qi Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xing-Wei Gu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xiao-Hua Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Guan-Wu Yin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences P. R. China
| |
Collapse
|