1
|
Shi Y, Wang Y, Meng N, Liao Y. Photothermal Conversion Porous Organic Polymers: Design, Synthesis, and Applications. SMALL METHODS 2024; 8:e2301554. [PMID: 38485672 DOI: 10.1002/smtd.202301554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Indexed: 10/18/2024]
Abstract
Solar energy is a primary form of renewable energy, and photothermal conversion is a direct conversion process with tunable conversion efficiency. Among various kinds of photothermal conversion materials, porous organic polymers (POP) are widely investigated owing to their controllable molecular design, tailored porous structures, good absorption of solar light, and low thermal conductivity. A variety of POP, such as conjugated microporous polymers (CMP), covalent organic frameworks (COF), hyper-crosslinked porous polymers (HCP), polymers of intrinsic microporosity (PIM), porous ionic polymers (PIP), are developed and applied in photothermal conversion applications of seawater desalination, latent energy storage, and biomedical fields. In this review, a comprehensive overview of the recent advances in POP for photothermal conversion is provided. The micro molecular structure characteristics and macro morphology of POP are designed for applications such as seawater desalination, latent heat energy storage, phototherapy and photodynamic therapy, and drug delivery. Besides, a probe into the underlying mechanism of structural design for constructing POP with excellent photothermal conversion performance is methodicalized. Finally, the remaining challenges and prospective opportunities for the future development of POP for solar energy-driven photothermal conversion applications are elucidated.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuzhu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Ma J, Low J, Wu D, Gong W, Liu H, Liu D, Long R, Xiong Y. Cu and Si co-doping on TiO 2 nanosheets to modulate reactive oxygen species for efficient photocatalytic methane conversion. NANOSCALE HORIZONS 2022; 8:63-68. [PMID: 36385645 DOI: 10.1039/d2nh00457g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we successfully construct Cu and Si co-doped ultrathin TiO2 nanosheets. As confirmed by comprehensive characterizations, Cu and Si co-doping can rationally tailor the electronic structure of TiO2 to maneuver reactive oxygen species for effective photocatalytic methane conversion. In addition, this co-doping greatly enhances the utilization efficiency of photogenerated charges. Furthermore, it is revealed that Cu and Si co-doping can significantly boost the adsorption and activation of methane on TiO2 nanosheets. As a result, the optimized catalyst achieves a C2H6 production rate of 33.8 μmol g-1 h-1 with a selectivity of 88.4%. This work provides insights into nanocatalyst design toward efficient photocatalytic methane conversion into value-added compounds.
Collapse
Affiliation(s)
- Jun Ma
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Jingxiang Low
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Di Wu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hengjie Liu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
3
|
TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Meng W, Zhao Y, Dai D, Zhang Q, Wang Z, Liu Y, Zheng Z, Cheng H, Dai Y, Huang B, Wang P. Synergy of Au-Pt for Enhancing Ethylene Photodegradation Performance of Flower-like TiO 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3221. [PMID: 36145006 PMCID: PMC9505558 DOI: 10.3390/nano12183221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Efficient and low-cost degradation of ethylene has always been a difficult problem in the storage and transportation of fruits and vegetables. Although photocatalysis is considered to be a feasible and efficient solution for ethylene degradation, the low degradation ability of conventional catalysts for small non-polar molecules limits its application. TiO2 has the advantage of tunable microstructure, but it also has the defects of wide band gap and low utilization of sunlight. The surface plasmon resonance (SPR) effect of noble metals can effectively improve the visible light absorption range of catalysts, and the synergy of noble metals further enhances the photocatalytic ability. Herein, we developed a series of AuPt catalysts through the photo-deposition method. Benefited from the SPR effect and the synergy of Au and Pt, the efficiency of AuPt-TiO2 was 19.9, 4.64 and 2.42 times that of TiO2, Au-TiO2 and Pt-TiO2, and the photocatalytic degradation ability of AuPt-TiO2 was maintained in five cyclic stability tests. Meanwhile, the transient photocurrent spectra and PL spectra proved that the light absorption capacity and carrier separation efficiency of AuPt-TiO2 were enhanced. This work provides a new direction for enhancing non-polar small-molecule photodegradation of semiconductors.
Collapse
Affiliation(s)
- Wanzhen Meng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yunrui Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dujuan Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Qianqian Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Ren Y, Wang H, Zhang T, Ma L, Ye P, Zhong Y, Hu Y. Designed preparation of CoS/Co/MoC nanoparticles incorporated in N and S dual-doped porous carbon nanofibers for high-performance Zn-air batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Zhang K, Lu G, Xi Z, Li Y, Luan Q, Huang X. Covalent organic framework stabilized CdS nanoparticles as efficient visible-light-driven photocatalysts for selective oxidation of aromatic alcohols. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|