1
|
Hou W, Huang L, Wang J, Luyten W, Lai J, Zhou Z, Kang S, Dai P, Wang Y, Huang H, Lan J. Cajaninstilbene Acid and Its Derivative as Multi-Therapeutic Agents: A Comprehensive Review. Molecules 2024; 29:5440. [PMID: 39598829 PMCID: PMC11597117 DOI: 10.3390/molecules29225440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Pigeon pea (Cajanus cajan (L.) Millsp.) is a traditional Chinese medicinal plant widely utilized in folk medicine due to its significant pharmacological and nutritional properties. Cajaninstilbene acid (CSA), a stilbene compound derived from pigeon pea leaves, has been extensively investigated since the 1980s. A thorough understanding of CSA's mechanisms of action and its therapeutic effects on various diseases is crucial for developing novel therapeutic approaches. This paper presents an overview of recent research advancements concerning the biological activities and mechanisms of CSA and its derivatives up to February 2024. The review encompasses discussions on the in vivo metabolism of CSA and its derivatives, including antipathogenic micro-organisms activity, anti-tumor activity, systematic and organ protection activity (such as bone protection, cardiovascular protection, neuroprotection), anti-inflammatory activity, antioxidant activity, immune regulation as well as action mechanism of CSA and its derivatives. The most studied activities are antipathogenic micro-organisms activities. Additionally, the structure-activity relationships of CSA and its derivatives as well as the total synthesis of CSA are explored, highlighting the potential for developing new pharmaceutical agents. This review aims to provide a foundation for future clinical applications of CSA and its derivatives.
Collapse
Affiliation(s)
- Wen Hou
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Lejun Huang
- School of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Jinyang Wang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, 3000 Leuven, Belgium
| | - Jia Lai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Zhinuo Zhou
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Sishuang Kang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Ping Dai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Yanzhu Wang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Hao Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Jinxia Lan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
2
|
Huang YJ, Zang YP, Peng LJ, Yang MH, Lin J, Chen WM. Cajaninstilbene acid derivatives conjugated with siderophores of 3-hydroxypyridin-4(1H)-ones as novel antibacterial agents against Gram-negative bacteria based on the Trojan horse strategy. Eur J Med Chem 2024; 269:116339. [PMID: 38537513 DOI: 10.1016/j.ejmech.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
The low permeability of the outer membrane of Gram-negative bacteria is a serious obstacle to the development of new antibiotics against them. Conjugation of antibiotic with siderophore based on the "Trojan horse strategy" is a promising strategy to overcome the outer membrane obstacle. In this study, series of antibacterial agents were designed and synthesized by conjugating the 3-hydroxypyridin-4(1H)-one based siderophores with cajaninstilbene acid (CSA) derivative 4 which shows good activity against Gram-positive bacteria by targeting their cell membranes but is ineffective against Gram-negative bacteria. Compared to the inactive parent compound 4, the conjugates 45c or 45d exhibits significant improvement in activity against Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae and especially P. aeruginosa (minimum inhibitory concentrations, MICs = 7.8-31.25 μM). The antibacterial activity of the conjugates is attributed to the CSA derivative moiety, and the action mechanism is by disruption of bacterial cell membranes. Further studies on the uptake mechanisms showed that the bacterial siderophore-dependent iron transport system was involved in the uptake of the conjugates. In addition, the conjugates 45c and 45d showed a lower cytotoxic effects in vivo and in vitro and a positive therapeutic effect in the treatment of C. elegans infected by P. aeruginosa. Overall, our work describes a new class and a promising 3-hydroxypyridin-4(1H)-one-CSA derivative conjugates for further development as antibacterial agents against Gram-negative bacteria.
Collapse
Affiliation(s)
- Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Yi-Peng Zang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Li-Jun Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Ming-Han Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China.
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China.
| |
Collapse
|
3
|
Fujita T, Lin J, Kimishima A, Arai M, Takikawa H, Ogura Y. Synthesis and biological evaluation of cajaninstilbene acid and amorfrutins A-D as cytotoxic agents against human pancreatic carcinoma PANC-1 cells. Biosci Biotechnol Biochem 2022; 86:590-595. [PMID: 35157035 DOI: 10.1093/bbb/zbac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
A concise synthesis of cajaninstilbene acid was achieved in 7 steps from (E)-3,5-dimethoxystilbene in 8.6% overall yield via the Claisen rearrangement of an aryl reverse-prenyl ether as the key step. Cytotoxic activities against human pancreatic carcinoma PANC-1 cells of cajaninstilbene acid and amorfrutins A-D were also evaluated.
Collapse
Affiliation(s)
- Tadafumi Fujita
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jianyu Lin
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kimishima
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masayoshi Arai
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Ogura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Cajaninstilbene acid analogues as novel quorum sensing and biofilm inhibitors of Pseudomonas aeruginosa. Microb Pathog 2020; 148:104414. [DOI: 10.1016/j.micpath.2020.104414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/20/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023]
|