1
|
Wang C, Huangfu Y, Wang J, Lu X, Liu D, Zhang ZL. Microchip construction for migration assays: investigating the impact of physical confinement on cell morphology and motility during vaccinia virus infection. Anal Bioanal Chem 2024; 416:5605-5618. [PMID: 39158632 DOI: 10.1007/s00216-024-05485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Vaccinia virus (VACV)-induced cell migration is thought to be closely related to the rapid transmission of viral infection in the body. The limited studies are mainly based on scratch assay using traditional cell culture techniques, which inevitably ignores the influences of extracellular microenvironment. Physical confinement, inherently presenting in vivo, has proven to be a critical extern cue in modulating migration behaviors of multiple cells, while its impacts on VACV-induced cell motility remain unclear. Herein, we developed a migration assay microchip featuring confined microchannel array to investigate the effect of physical confinement on infected cell morphology and motility during VACV infection. Results showed that different from the random cell migration observed in traditional scratch assay on planar substrate, VACV-infected cells exhibited accelerated directionally persistent migration under confinement microenvironment. Moreover, single-directed elongated dominant lamella appeared to contrast distinctly with multiple protrusions stretched in random directions under unconfined condition. Additionally, the Golgi complex tended to relocate behind the nucleus confined within the microchannel axis compared to the classical reorientation pattern. These differences in characteristic subcellular architecture and organelle reorientation of migrating cells revealed cell biological mechanisms underlying altered migration behavior. Collectively, our study demonstrates that physical confinement acting as a guidance cue has profound impacts on VACV-induced migration behaviors, which provides new insight into cell migration behavior and viral rapid spread during VACV infection.
Collapse
Affiliation(s)
- Cheng Wang
- School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China.
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yueyue Huangfu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ji Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Hong Kong, 999077, China
| | - Xiaofeng Lu
- School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Dong Liu
- School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Liu W, Tang D, Xu XX, Liu YJ, Jiu Y. How Physical Factors Coordinate Virus Infection: A Perspective From Mechanobiology. Front Bioeng Biotechnol 2021; 9:764516. [PMID: 34778236 PMCID: PMC8585752 DOI: 10.3389/fbioe.2021.764516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Pandemics caused by viruses have threatened lives of thousands of people. Understanding the complicated process of viral infection provides significantly directive implication to epidemic prevention and control. Viral infection is a complex and diverse process, and substantial studies have been complemented in exploring the biochemical and molecular interactions between viruses and hosts. However, the physical microenvironment where infections implement is often less considered, and the role of mechanobiology in viral infection remains elusive. Mechanobiology focuses on sensation, transduction, and response to intracellular and extracellular physical factors by tissues, cells, and extracellular matrix. The intracellular cytoskeleton and mechanosensors have been proven to be extensively involved in the virus life cycle. Furthermore, innovative methods based on micro- and nanofabrication techniques are being utilized to control and modulate the physical and chemical cell microenvironment, and to explore how extracellular factors including stiffness, forces, and topography regulate viral infection. Our current review covers how physical factors in the microenvironment coordinate viral infection. Moreover, we will discuss how this knowledge can be harnessed in future research on cross-fields of mechanobiology and virology.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Daijiao Tang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Xin Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Lee MH, Park YJ, Hong SH, Koo MA, Cho M, Park JC. Pulsed Electrical Stimulation Enhances Consistency of Directional Migration of Adipose-Derived Stem Cells. Cells 2021; 10:cells10112846. [PMID: 34831069 PMCID: PMC8616144 DOI: 10.3390/cells10112846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022] Open
Abstract
Electrical stimulation is a well-known strategy for regulating cell behavior, both in pathological and physiological processes such as wound healing, tissue regeneration, and embryonic development. Electrotaxis is the directional migration of cells toward the cathode or anode when subjected to electrical stimulation. In this study, we investigated the conditions for enhanced directional migration of electrically stimulated adipose-derived stem cells (ADSCs) during prolonged culture, using a customized agar-salt electrotaxis chamber. Exposure of ADSCs to a 1200 μA electric current for 3 h, followed by cessation of stimulation for 6 h and resumed stimulation for a further 3 h, increased directional cell migration toward the anode without inducing cell death. Moreover, Golgi polarization maintained the direction of polarity parallel to the direction of cell movement. Herein, we demonstrated that a pulsed electric current is sufficient to trigger directional migration of ADSCs in long-term culture while maintaining cell viability.
Collapse
Affiliation(s)
- Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
| | - Ye Jin Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung Hee Hong
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Minyoung Cho
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1917
| |
Collapse
|