1
|
de Melo SMG, Dos Santos T, Silva DG, Martins YA, Eckhardt P, Lopez RFV, Opatz T, Protti S, da Silva Emery F. Versatile Metal-Free Arylation of BODIPY and Bis(BF 2) Chromophores by Using Arylazosulfones in a Sunflow System. Chemistry 2024; 30:e202402634. [PMID: 39078075 DOI: 10.1002/chem.202402634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 07/31/2024]
Abstract
BODIPYs have a well-established role in biological sciences as chemosensors and versatile biological markers due to their chemical reactivity, which allows for fine-tuning of their photophysical characteristics. In this work, we combined the unique reactivity of arylazo sulfones with the advantages of a "sunflow" reactor to develop a fast, efficient, and versatile method for the photochemical arylation of BODIPYs and other chromophores. This approach resulted in red-shifted emitting fluorophores due to extended electronic delocalization at the 3- and 5-positions of the BODIPY core. This method represents an advantageous approach for BODIPY functionalization compared to existing strategies.
Collapse
Affiliation(s)
- Shaiani Maria Gil de Melo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Thiago Dos Santos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
- Center of Research and Advancements in Fragments and Molecular Targets-CRAFT, FCFRP-USP, Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Daniel Gedder Silva
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
- Center of Research and Advancements in Fragments and Molecular Targets-CRAFT, FCFRP-USP, Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Yugo Araújo Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg University, Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Renata Fonseca Vianna Lopez
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Viale Taramelli 12, 27100, Pavia, Italy
| | - Flavio da Silva Emery
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
- Center of Research and Advancements in Fragments and Molecular Targets-CRAFT, FCFRP-USP, Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| |
Collapse
|
2
|
Dutta K, Wadawale AP, Mula S. meso-Methyl Amination of BODIPYs by Regiospecific Cross Dehydrogenative Coupling via Direct C(sp 3)-N(sp 3) Bond Formation. Org Lett 2024; 26:7267-7272. [PMID: 38875502 DOI: 10.1021/acs.orglett.4c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Herein, we report a direct meso-methyl amination of BODIPY dyes by C(sp3)-N(sp3) bond formation using PIDA as an oxidant with a wide range of aliphatic secondary amines. This metal free cross dehydrogenative coupling reaction is regiospecific at the meso-methyl position of BODIPY in the presence of C1, C3, C5, and C7 methyl groups. Detailed nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry, and X-ray crystallographic studies were performed to establish the reaction mechanism and the regiospecificity of the reaction. Finally, the photophysical and electrochemical properties of the newly synthesized dyes were evaluated and rationalized.
Collapse
Affiliation(s)
- Kartik Dutta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amey P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
3
|
Dong XX, Liu JG, Zhang HX, Zhang B. A Practical and Modular Method for Direct C-H Functionalization of the BODIPY Core via Thianthrenium Salts. Chemistry 2024:e202401929. [PMID: 38818768 DOI: 10.1002/chem.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Direct structural modification of small-molecule fluorophores represents a straightforward and appealing strategy for accessing new fluorescent dyes with desired functionalities. We report herein a general and efficient visible-light-mediated method for the direct C-H functionalization of BODIPY, an important fluorescent chromophore, using readily accessible and bench-stable aryl and alkenylthianthrenium salts. This practical approach operates at room temperature with extraordinary site-selectivity, providing a step-economical means to construct various valuable aryl- and alkenyl-substituted BODIPY dyes. Remarkably, this protocol encompasses a broad substrate scope and excellent functional-group tolerance, and allows for the modular synthesis of sophisticated symmetrical and asymmetrical disubstituted BODIPYs by simply employing different combinations of thianthrenium salts. Moreover, the late-stage BODIPY modification of complex drug molecules further highlights the potential of this novel methodology in the synthesis of fluorophore-drug conjugates.
Collapse
Affiliation(s)
- Xin-Xin Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing-Guo Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Xiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
4
|
Li H, Wang J, Jiao L, Hao E. BODIPY-based photocages: rational design and their biomedical application. Chem Commun (Camb) 2024; 60:5770-5789. [PMID: 38752310 DOI: 10.1039/d4cc01412j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Photocages, also known as photoactivated protective groups (PPGs), have been utilized to achieve controlled release of target molecules in a non-invasive and spatiotemporal manner. In the past decade, BODIPY fluorophores, a well-established class of fluorescent dyes, have emerged as a novel type of photoactivated protective group capable of efficiently releasing cargo species upon irradiation. This is due to their exceptional properties, including high molar absorption coefficients, resistance to photochemical and thermal degradation, multiple modification sites, favorable uncaging quantum yields, and highly adjustable spectral properties. Compared to traditional photocages that mainly absorb UV light, BODIPY-based photocages that absorb visible/near-infrared (Vis/NIR) light offer advantages such as deeper tissue penetration and reduced bio-autofluorescence, making them highly suitable for various biomedical applications. Consequently, different types of photoactivated protective groups based on the BODIPY skeleton have been established. This highlight provides a comprehensive overview of the strategies employed to construct BODIPY photocages by substituting leaving groups at different positions within the BODIPY fluorophore, including the meso-methyl position, boron position, 2,6-position, and 3,5-position. Furthermore, the application of these BODIPY photocages in biomedical fields, such as fluorescence imaging and controlled release of active species, is discussed.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Jun Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
5
|
Kumar B, Bhatta A, Saraf P, Pandurang TP, Rangan K, Sarkar M, Mitra S, Kumar D. BODIPY(aryl)iodonium salts in the efficient synthesis of diversely functionalized BODIPYs and selective detection of serum albumin. Org Biomol Chem 2024; 22:3405-3414. [PMID: 38587475 DOI: 10.1039/d4ob00336e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
BODIPY(aryl)iodonium salts were readily accessible from the high-yielding reaction of BODIPY with iodoarenes or hydroxyl(tosyloxy)iodoarenes in the presence of m-CPBA. The prepared BODIPY(aryl)iodonium salts bearing substituents of varied electronic nature were utilized for the direct syntheses of thiocyanate, azide, amine and acrylate functionalized BODIPYs and β,β'-bis-BODIPYs. The regioselective syntheses of α-piperidinyl and β-piperidinyl substituted BODIPYs were achieved through the reaction of BODIPY(aryl)iodonium salts with piperidine in the absence and presence of copper(I). Expeditious and high yielding (79-82%) synthesis of β,β'-bis-BODIPYs was also developed through the palladium-catalyzed reductive coupling of the easily accessible BODIPY(aryl)iodonium salts. Some of the indole-appended BODIPYs and bis-BODIPYs displayed strong absorption in the visible region (∼610 nm). The BODIPY(aryl)iodonium salts also showed significant binding with serum albumin and were observed to be selective serum protein sensors with estimated limits of detection as low as 7 μg mL-1 in some cases.
Collapse
Affiliation(s)
- Bintu Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-333 031, India.
| | - Anindita Bhatta
- Department of Chemistry, North-Eastern Hill University, Shillong-793022, India.
| | - Prakriti Saraf
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-333 031, India.
| | - Taur Prakash Pandurang
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-333 031, India.
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus-500 078, India
| | - Madhushree Sarkar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-333 031, India.
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong-793022, India.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-333 031, India.
| |
Collapse
|
6
|
Wu S, Zhang W, Li C, Ni Z, Chen W, Gai L, Tian J, Guo Z, Lu H. Rational design of CT-coupled J-aggregation platform based on Aza-BODIPY for highly efficient phototherapy. Chem Sci 2024; 15:5973-5979. [PMID: 38665518 PMCID: PMC11040637 DOI: 10.1039/d3sc06976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
Supramolecular engineering is exceptionally appealing in the design of functional materials, and J-aggregates resulting from noncovalent interactions offer intriguing features. However, building J-aggregation platforms remains a significant challenge. Herein, we report 3,5-dithienyl Aza-BODIPYs with a donor-acceptor-donor (D-A-D) architecture as the first charge transfer (CT)-coupled J-aggregation BODIPY-type platform. The core acceptor moieties in one molecule interact with donor units in neighboring molecules to generate slip-stacked packing motifs, resulting in CT-coupled J-aggregation with a redshifted wavelength up to 886 nm and an absorption tail over 1100 nm. The J-aggregates show significant photoacoustic signals and high photothermal conversion efficiency of 66%. The results obtained in vivo show that the J-aggregates have the potential to be used for tumor photothermal ablation and photoacoustic imaging. This study not only demonstrates Aza-BODIPY with D-A-D as a novel CT-coupled J-aggregation platform for NIR phototherapy materials but also motivates further study on the design of J-aggregation.
Collapse
Affiliation(s)
- Shengmei Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Wenze Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Chaoran Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Weifeng Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| |
Collapse
|
7
|
Kromer C, Schwibbert K, Radunz S, Thiele D, Laux P, Luch A, Tschiche HR. ROS generating BODIPY loaded nanoparticles for photodynamic eradication of biofilms. Front Microbiol 2023; 14:1274715. [PMID: 37908542 PMCID: PMC10615615 DOI: 10.3389/fmicb.2023.1274715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial biofilms can pose a serious health risk to humans and are less susceptible to antibiotics and disinfection than planktonic bacteria. Here, a novel method for biofilm eradication based on antimicrobial photodynamic therapy utilizing a nanoparticle in conjunction with a BODIPY derivative as photosensitizer was developed. Reactive oxygen species are generated upon illumination with visible light and lead to a strong, controllable and persistent eradication of both planktonic bacteria and biofilms. One of the biggest challenges in biofilm eradication is the penetration of the antimicrobial agent into the biofilm and its matrix. A biocompatible hydrophilic nanoparticle was utilized as a delivery system for the hydrophobic BODIPY dye and enabled its accumulation within the biofilm. This key feature of delivering the antimicrobial agent to the site of action where it is activated resulted in effective eradication of all tested biofilms. Here, 3 bacterial species that commonly form clinically relevant pathogenic biofilms were selected: Escherichia coli, Staphylococcus aureus and Streptococcus mutans. The development of this antimicrobial photodynamic therapy tool for biofilm eradication takes a promising step towards new methods for the much needed treatment of pathogenic biofilms.
Collapse
Affiliation(s)
- Charlotte Kromer
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Karin Schwibbert
- Department Materials and the Environment, Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany
| | | | - Dorothea Thiele
- Department Materials and the Environment, Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Peter Laux
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andreas Luch
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Harald R. Tschiche
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
8
|
Wang D, Wang X, Zhou S, Gu P, Zhu X, Wang C, Zhang Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Shu H, Guo M, Wang M, Fan S, Zhou M, Xu L, Rao Y, Osuka A, Song J. Rhodium-Catalyzed [5 + 2] Annulation of Pyrrole Appended BODIPYs: Access to Azepine-Fused BODIPYs. Org Lett 2023; 25:1817-1822. [PMID: 36920165 DOI: 10.1021/acs.orglett.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Rhodium-catalyzed C-H/N-H [5 + 2] annulations of 8-(pyrrol-2-yl)-appended boron-complexed dipyrromethenes (BODIPYs) with internal alkynes have been established to afford a series of azepine-fused BODIPYs with good yields and excellent regioselectivity, in which the pyrrol-2-yl unit serves as the directing group as a rare example. A RhI intermediate was obtained to indicate a RhI/RhIII catalytic process involved in this reaction. Importantly, the [5 + 2] C-H annulation is demonstrated as a concise strategy to change the optical properties of BODIPY.
Collapse
Affiliation(s)
- Hui Shu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Mengjie Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Machongyang Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Shuibo Fan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
10
|
Hu W, Fan M, Zhang XF, Li M, Li G. Photophyical and photosensitizing properties of BODIPYs substantially changed by alkyl- and phenyl-amino groups on meso carbon. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122222. [PMID: 36508905 DOI: 10.1016/j.saa.2022.122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
meso-RNH (R = C3H7, C4H9, PhCH2, H, and Ph) substituted BODIPY compounds have been prepared to examine their photophysical properties and photosensitizing abilities. We have measured the UV-vis absorption, steady state and time resolved fluorescence, excited triplet state formation using laser flash photolysis, singlet oxygen generation ability using chemical trapping method. The results show that the presence of meso-RNH leads to large blue shift of absorption and emission wavelength, remarkable decrease in fluorescence quantum yield and lifetime values, and significant increase in singlet oxygen formation quantum yield. Quantum chemical calculation also reveals the photoinduced charge transfer (PCT) mechanism. We conclude that property changes are due to: 1) S0 and S1 geometry, 2) ground state structural isomerization, and 3) intramolecular PCT. These results and mechanisms are helpful for designing new functional materials.
Collapse
Affiliation(s)
- Wenbin Hu
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Mingyue Fan
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China; MPC Tech, MPC Technologies, Hamilton, ON L8S 3H4, Canada.
| | - Mengmeng Li
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Guoying Li
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| |
Collapse
|
11
|
Miao W, Guo X, Yan X, Shang Y, Yu C, Dai E, Jiang T, Hao E, Jiao L. Red-to-Near-Infrared Emitting PyrrolylBODIPY Dyes: Synthesis, Photophysical Properties and Bioimaging Application. Chemistry 2023; 29:e202203832. [PMID: 36650103 DOI: 10.1002/chem.202203832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Near-infrared (NIR) fluorophores with characteristics such as deep tissue penetration, minimal damage to the biological samples, and low background interference, are highly sought-after materials for in vivo and deep-tissue fluorescence imaging. Herein, series of 3-pyrrolylBODIPY derivatives and 3,5-dipyrrolylBODIPY derivatives have been prepared by a facile regioselective nucleophilic aromatic substitution reaction (SN Ar) on 3,5-halogenated BODIPY derivatives (3,5-dibromo or 2,3,5,6-tetrachloroBODIPYs) with pyrroles. The installation of a pyrrolic unit onto the 3-position of the BODIPY chromophore leads to a dramatic red shift of both the absorption (up to 160 nm) and the emission (up to 260 nm) in these resultant 3-pyrrolylBODIPYs with respect to that of the BODIPY chromophore. Their further 5-positional functionalization provides a facile way to fine tune their photophysical properties, and these resulting dipyrrolylBODIPYs and functionalized pyrrolylBODIPYs show strong absorption in the deep red-to-NIR regions (595-684 nm) and intense NIR fluorescence emission (650-715 nm) in dichloromethane. To demonstrate the applicability of these functionalized pyrrolylBODIPYs as NIR fluorescent probes for cell imaging, pyrrolylBODIPY 6 a containing mitochondrion-targeting butyltriphenylphosphonium cationic species was also prepared. It selectively localized in mitochondria of HeLa cells, with low cytotoxicity and intense deep red fluorescence emission.
Collapse
Affiliation(s)
- Wei Miao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.,Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Xi Yan
- Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Yingjian Shang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - En Dai
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Ting Jiang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| |
Collapse
|
12
|
Wang J, Yu C, Hao E, Jiao L. Conformationally restricted and ring-fused aza-BODIPYs as promising near infrared absorbing and emitting dyes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Hu W, Zhang R, Zhang XF, Liu J, Luo L. Halogenated BODIPY photosensitizers: Photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120965. [PMID: 35131619 DOI: 10.1016/j.saa.2022.120965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
We have systematically examined the formation of singlet oxygen O2(1Δg), the excited triplet state (T1), and excited singlet state (S1) for halogenated BODIPY photosensitizers (halogen = Cl, Br, and I) in eight solvents to understand how halogen atoms and solvent affect these properties. The phosphorescence spectra and lifetimes of singlet oxygen generated by these halogenated BODIPYs have been measured by steady state/time resolved NIR emission, while the formation quantum yield of singlet oxygen (ΦΔ) has been determined by chemical method using diphenylisobenzofuran (DPBF) as the trapping agent. The formation quantum yield ΦΔ of singlet oxygen can be as high as 0.96 for iodinated BODIPY and 0.71 for brominated BODIPY. The triplet state T1 absorption spectra of brominated and iodinated BODIPYs have been recorded by laser flash photolysis method, in which T1 shows high formation efficiency and long lifetime. The formation and decay of excited singlet state S1 of four BODIPYs have been measured by ground state (S0) absorption and steady state/time resolved fluorescence. The results show that larger halogen atoms on BODIPY core lead to smaller fluorescence quantum yield, shorter fluorescence lifetime and higher singlet oxygen formation quantum yield due to heavy atom effect that promotes the formation of triplet state. On the other hand, higher solvent polarity causes lower singlet oxygen formation quantum yield, smaller fluorescence quantum yield, and shorter fluorescence lifetime. This solvent effect is explained by the presence of photoinduced charge transfer (ICT) process from halogen atoms to BODIPY. The ICT efficiency has been estimated and the results are agreed with ICT theory. ICT process in halogenated BODIPYs has never been revealed in literature. HOMO/LUMO obtained from DFT calculation also supports the presence of ICT. The involvement of ICT in the photosensitizing process of halogenated BODIPYs provides new insights for designing BODIPY photosensitizers for photodynamic therapy of tumor.
Collapse
Affiliation(s)
- Wenbin Hu
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Rui Zhang
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China.
| | - Jiatian Liu
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Lin Luo
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| |
Collapse
|
15
|
Avellanal-Zaballa E, Gartzia-Rivero L, Arbeloa T, Bañuelos J. Fundamental photophysical concepts and key structural factors for the design of BODIPY-based tunable lasers. INT REV PHYS CHEM 2022. [DOI: 10.1080/0144235x.2022.2096772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | | | - Teresa Arbeloa
- Dpto. Química Física, Universidad del País Vasco (UPV-EHU), Bilbao, Spain
| | - Jorge Bañuelos
- Dpto. Química Física, Universidad del País Vasco (UPV-EHU), Bilbao, Spain
| |
Collapse
|
16
|
Lv F, Li H, Wu Q, Guo X, Zhang H, Yu C, Jiao L, Hao E. Silver-mediated, direct phosphorylation of BODIPY dyes at the 3- or 3,5-positions with H-phosphonates. Chem Commun (Camb) 2022; 58:3937-3940. [PMID: 35244131 DOI: 10.1039/d2cc00297c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A direct and regioselective C-H/P-H cross-coupling of dialkyl phosphites, and diphenylphosphine oxide to easily available BODIPYs through an Ag-mediated radical addition, resulted in a series of new α-phosphorylated BODIPY fluorophores under mild conditions. Hydrolysis of the phosphonate gave the corresponding BODIPY phosphoric acid, which is soluble and fluorescent in water with a high quantum yield of 0.83.
Collapse
Affiliation(s)
- Fan Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. .,Department of Chemistry, WanNan Medical College, Wuhu, 241000, China
| | - Heng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Hongtao Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
17
|
Wang K, Zhang J, Hu R, Liu C, Bartholome TA, Ge H, Li B. Transition-Metal-Catalyzed C–C Bond-Forming Reactions via C–H Activation for the Development of Fluorescent Materials with Practical Value. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Jingxian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Ruike Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Tyler A. Bartholome
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
18
|
Alkhatib Q, Helal W, Marashdeh A. Accurate predictions of the electronic excited states of BODIPY based dye sensitizers using spin-component-scaled double-hybrid functionals: a TD-DFT benchmark study. RSC Adv 2022; 12:1704-1717. [PMID: 35425182 PMCID: PMC8978916 DOI: 10.1039/d1ra08795a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/01/2022] [Indexed: 12/31/2022] Open
Abstract
The vertical excitation energies of 13 BODIPY based dye sensitizers are benchmarked by means of TD-DFT, using 36 functionals from different DFT rungs. Most TD-DFT results were found to overestimate the excitation energies, and show mean absolute error (MAE) values in the range 0.2-0.5 eV. The dispersion-corrected, spin-component-scaled, double-hybrid (DSD) functionals DSD-BLYP and DSD-PBEP86 were found to have the smallest MAE values of 0.083 eV and 0.106 eV, respectively, which is close to the range of average errors found in the more expensive coupled-cluster methods. Moreover, DSD-BLYP and DSD-PBEP86 functionals show excellent consistency and quality of results (standard deviation = 0.048 eV and 0.069 eV respectively). However, the range separated hybrid (RSH) and the range separated double hybrid (RSDH) functionals were found to provide the best predictability (linear determination coefficient R 2 > 0.97 eV).
Collapse
Affiliation(s)
- Qabas Alkhatib
- Department of Chemistry, The University of Jordan Amman 11 942 Jordan
| | - Wissam Helal
- Department of Chemistry, The University of Jordan Amman 11 942 Jordan
| | - Ali Marashdeh
- Department of Chemistry, Al-Balqa Applied University 19 117 Al-Salt Jordan
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
19
|
Wu S, Gai L, Zhou Z, Lu H. Recent advances in zig-zag-fused BODIPYs. Org Chem Front 2022. [DOI: 10.1039/d2qo01243j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in the synthesis of zig-zag-fused BODIPY, structure–property relationships, as well as their applications are summarized.
Collapse
Affiliation(s)
- Shengmei Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Zhikuan Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
20
|
Wang Y, Zhang D, Xiong K, Shang R, Jiang XD. Near-infrared absorbing (>700 nm) aza-BODIPYs by freezing the rotation of the aryl groups. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Kang Z, Wu Q, Guo X, Wang L, Ye Y, Yu C, Wang H, Hao E, Jiao L. FeCl 3-promoted regioselective synthesis of BODIPY dimers through oxidative aromatic homocoupling reactions. Chem Commun (Camb) 2021; 57:9886-9889. [PMID: 34494065 DOI: 10.1039/d1cc04098g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The direct 3,3'-dimerization of BODIPYs lacking substituent groups in the 1,2,6, and 7 positions was developed by oxidative coupling with FeCl3. This regioselective dimerization was achieved for BODIPYs substituted only in the 5-position with Cl or aryl groups. Further functionalization of the 5,5'-dichloride dimer gave the corresponding pyrrole or 4-(2-aminoethyl)morpholine disubstituted dimers 2f and 2g, respectively. While dimer 2f exhibited intense NIR absorption/emission maxima at 773/827 nm in toluene, dimer 2g showed favorable lysosome-targeting NIR fluorescence in living cells.
Collapse
Affiliation(s)
- Zhengxin Kang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. .,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Long Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Yin Ye
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Hua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
22
|
Miao W, Li Z, Yu C, Hao E, Jiao L. Synthesis of pyrrolyl-BODIPY dyes through regioselective SN Ar reactions and application as a fluorescent sensor for fluoride anion. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621501042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two pyrrolyl-BODIPY dyes with 3,5-di-[Formula: see text]-butyl-4-hydroxyphenyl group were synthesized through stepwise S[Formula: see text]Ar reactions of 3,5-dibromoBODIPYs, which were used as a fluorescent sensor for basic anions. The intermediate pyrrolyl-BODIPYs 2a–2b were regioselectively synthesized through an efficient S[Formula: see text]Ar reaction between 3,5-dibromoBODIPY 1a and pyrroles. The target pyrrolyl-BODIPYs 3a–3b with a 3,5-di-[Formula: see text]-butyl-4-hydroxyphenyl group at 3-position and a pyrrole substituent at 5-position were obtained through a second S[Formula: see text]Ar reaction between pyrrolyl-BODIPYs 2a–2b and high steric hindrance 2,6-dibutylphenol in 90% and 88% yields, respectively. In contrast, the reaction between pyrrolyl-BODIPYs 2a–2b and phenol gave pyrrolyl-BODIPYs 3c–3d with phenoxy substituent at 3-position. These pyrrolyl-BODIPYs 3a–2d show strong, sharp absorptions (551–604 nm) and emissions (564–634 nm) with high fluorescence quantum yields up to 0.86 in dichloromethane. Importantly, the 3,5-di-[Formula: see text]-butyl-4-hydroxyphenyl group of pyrrolyl-BODIPY 3a showed a turn-off fluorescent response toward fluoride anion.
Collapse
Affiliation(s)
- Wei Miao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241002, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhongxin Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241002, China
| | - Changjiang Yu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241002, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241002, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
23
|
Tan G, Maisuls I, Strieth‐Kalthoff F, Zhang X, Daniliuc C, Strassert CA, Glorius F. AIE-Active Difluoroboron Complexes with N,O-Bidentate Ligands: Rapid Construction by Copper-Catalyzed C-H Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101814. [PMID: 34309217 PMCID: PMC8456238 DOI: 10.1002/advs.202101814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Indexed: 05/12/2023]
Abstract
The development of organic materials with high solid-state luminescence efficiency is highly desirable because of their fundamental importance and applicability in optoelectronics. Herein, a rapid construction of novel BF2 complexes with N,O-bidentate ligands by using Cu(BF4 )2 •6H2 O as a catalyst and BF2 source is disclosed, which avoids the need for pre-composing the N,O-bidentate ligands and features a broad substrate scope and a high tolerance level for sensitive functional groups. Moreover, molecular oxygen is employed as the terminal oxidant in this transformation. A library of 36 compounds as a new class of BF2 complexes with remarkable photophysical properties is delivered in good to excellent yields, showing a substituent-dependency on the photophysical properties, derived from the π-π* character of the photoexcited state. In addition, aggregation-induced emission (AIE) is observed and quantified for the brightest exemplars. The excited state properties are fully investigated in solids and in THF/H2 O mixtures. Hence, a new series of photofunctional materials with variable photophysical properties is reported, with potential applications for sensing, bioimaging, and optoelectronics.
Collapse
Affiliation(s)
- Guangying Tan
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische ChemieCeNTechCiMICSoNWestfälische Wilhelms‐Universität MünsterHeisenbergstraße 11Münster48149Germany
| | - Felix Strieth‐Kalthoff
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Xiaolong Zhang
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Constantin Daniliuc
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieCeNTechCiMICSoNWestfälische Wilhelms‐Universität MünsterHeisenbergstraße 11Münster48149Germany
| | - Frank Glorius
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| |
Collapse
|
24
|
Xu N, Xiao Y, Ni Z, Gai L, Zhou Z, Lu H. Rationalizing the effect of benzo-fusion at [a] and [b] positions of BODIPY on fluorescence yields. Phys Chem Chem Phys 2021; 23:17402-17407. [PMID: 34350928 DOI: 10.1039/d1cp03160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin of the large difference of fluorescence yields between benzo[a] and benzo[b] BODIPY derivatives was investigated. The benzo[a]-BODIPY chromophore shows high fluorescence yields while the totally quenched fluorescence of benzo[b]-BODIPYs is observed. Quantum calculations indicated that larger spin-orbit coupling (SOC) and smaller singlet-triplet energy gaps result in non-fluorescence for benzo[b]-BODIPY. Benzo[b]-fusion makes a partial contribution to the HOMO but a full contribution to the HOMO-1, and thus the S1→ S0 and T2→ S0 transitions, involved in HOMO-LUMO and HOMO-1-LUMO, have different characteristics, which leads to spin flipping for intersystem crossing (ISC) and increases the SOC to 1.70 cm-1. However, benzo[a] contributes to HOMO and HOMO-1 equally, and minimizes the SOC between S1 and T2, leading to slow ISC from S1, thus possessing strong fluorescence. These results are useful for the rational design of heavy-atom-free triplet organic chromophores.
Collapse
Affiliation(s)
- Na Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | | | | | | | | | | |
Collapse
|
25
|
Xue Q, Xiang X, Gai L, Lu H. Panchromatic BODIPY dyes: Synthesis and optoelectronic properties. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Panchromatic dyes covering the visible and near-infrared (Vis/NIR) region are of considerable interest in the fields of DSSCs and OPVs as well as infrared sensing due to their efficient solar energy harvesting. Herein, we report two BODIPY dyes displaying a panchromatic absorption with an extension to the near-infrared range, by the introduction of bis(4-methoxyphenyl)aminophenylvinyl unit at 3,5-position of BODIPY core through Knoevenagel condensation reactions. The optoelectronic properties were fully investigated by spectroscopy, cyclic voltammetry (CV) measurements and DFT calculations. Our research provides a simple strategy to broaden the absorption spectrum of BODIPY dyes.
Collapse
Affiliation(s)
- Qifan Xue
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xiaoshuang Xiang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| |
Collapse
|
26
|
Hu C, Wen L, Chen X, Yan J, Zheng K, Liu X, Zhang N. Pyrrolizinone‐Fused BOPYINs: Characterization and Selective C‐O Bond Formation Mechanism. ChemistrySelect 2021. [DOI: 10.1002/slct.202102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cong Hu
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Liu Wen
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Xi Chen
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Jiaying Yan
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Xiang Liu
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 P. R. China
| |
Collapse
|
27
|
Wang J, Boens N, Jiao L, Hao E. Aromatic [b]-fused BODIPY dyes as promising near-infrared dyes. Org Biomol Chem 2021; 18:4135-4156. [PMID: 32441725 DOI: 10.1039/d0ob00790k] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Far-red and near-infrared (NIR) absorbing/emitting dyes have found diverse applications in biomedicine and material science. However, the absorption and emission of classical BODIPY chromophores at short wavelength hamper their applications. Several strategies have been adopted to modify the structure of the BODIPY core to design NIR dyes. Among these, the most efficient approach to expand the π-conjugation of the BODIPY core is via fusion of aromatic rings. So far, many novel BODIPY skeletons fused to aromatic hydrocarbons and heterocycles at the b bond have been reported. This review comprehensively describes the recent advances regarding the development of aromatic [b]-fused BODIPY dyes with the focus on the design and synthesis, the relationships between their photophysical/spectroscopic properties and molecular structures, and the potential applications in bioassays and optoelectronic devices.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. and Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Noël Boens
- Department of Chemistry, KU Leuven (Katholieke Universiteit Leuven), Celestijnenlaan 200f, 3001 Heverlee, Belgium
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
28
|
Liu D, Wen L, Chen X, Yan J, Zheng K, Liu X, Hu Y, Zhang N. Substituent effects on opticalproperties of pyrrolizine-fused BOPYIN. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119681. [PMID: 33744704 DOI: 10.1016/j.saa.2021.119681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Three new pyrrolizine-fused BOPYINs (DAB-H, DAB-OMe, DAB-ester) have been reported in 26-35% yield. The relationship between structures and optical spectra was investigated, which all the compounds show large Stokes Shift (3146-3884 cm-1) and high quantum yield (up to 99%) in solvents. Among these dyes, the decoration of electron donating/withdrawing groups on indole, pyrrole and pyrrolizine units has a significant impact on optical properties, especially emission spectra. The results suggested that electron withdrawing group on pyrrole and pyrrolizine units has hypsochromic shift on emission spectra (DAB-H, DAB-OMe, DAB-ester versus DAB-1,4,5). The optimized structure, electron distribution on frontier molecular orbital, energy gap and simulated stick spectra of DABs are discussed by Density Functional Theory (DFT) calculation. We claim the agreement between the experimental and theoretical absorption spectra.
Collapse
Affiliation(s)
- Debao Liu
- College of Materials and Chemical Engineering, Medical College, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China; Three Gorges University, Yichang, Hubei 443002, China
| | - Liu Wen
- College of Materials and Chemical Engineering, Medical College, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China; Three Gorges University, Yichang, Hubei 443002, China
| | - Xi Chen
- College of Materials and Chemical Engineering, Medical College, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China; Three Gorges University, Yichang, Hubei 443002, China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, Medical College, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China; Three Gorges University, Yichang, Hubei 443002, China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering, Medical College, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China; Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Medical College, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China; Three Gorges University, Yichang, Hubei 443002, China
| | - Yuanyuan Hu
- College of Materials and Chemical Engineering, Medical College, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China; Three Gorges University, Yichang, Hubei 443002, China.
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering, Medical College, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China; Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
29
|
Wang J, Fang X, Guo X, Wu Q, Gong Q, Yu C, Hao E, Jiao L. Sterically Protected and Conformation-Restricted BOBHY Dyes with Bright Near-Infrared Fluorescence: N 2O-type Expanded BOPHY Dyes Derived from Boronic Acids. Org Lett 2021; 23:4796-4801. [PMID: 34080878 DOI: 10.1021/acs.orglett.1c01515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new family of N2O-type hydrazine-containing bipyrrole boron complexes has been developed via a one-pot condensation of formylisoindole, hydrazine, and various organoboronic acids. Because of the conformation-restricted coplanar structure and the axial-substituted aryl groups, these novel dyes show deep-red absorption, bright near-infrared (NIR) fluorescence in both solution and solid states, and good solubility in organic solvents. The derivative with pyridinium ions also has been synthesized as an NIR mitochondrially targetable fluorescent probe.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Xingbao Fang
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingbao Gong
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
30
|
Sheng W, Wang Z, Hao E, Jiao L. Ultalong nanowires self-assembled from a [b]-bisphenanthrene-fused azadipyrromethene. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Wu Q, Wang S, Hao E, Jiao L. Highly selective, colorimetric probes for cyanide ion based on β-formylBODIPY dyes by an unprecedented nucleophilic addition reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119102. [PMID: 33186819 DOI: 10.1016/j.saa.2020.119102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Two β-formylBODIPYs with strong daylight excitable fluorescence and highly selective visual and colorimetric responses to cyanide anion (CN-) have been prepared. NMR titration experiments have been performed to study the sensing mechanism for these two dyes. Surprisingly, cyanide anion is nucleophilic addition to the α-position of BODIPY core (the azafulvene framework) in aqueous system instead of the expected classical nucleophilic addition to the formyl moiety of the probes. This nucleophilic addition of cyanide anion to the azafulvene framework causes the interruption of the π-conjugation of the BODIPY system, which brings a significant blue-shift (up to 104 nm) of the absorption maxima. A broadened and decreased absorption as well as ratiometrical fluorescence response (with maxima shifts from 523 to 670 nm) were observed with the titration of cyanide anion to probe 1b.
Collapse
Affiliation(s)
- Qinghua Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Material Science, Anhui Normal University, Wuhu 241002, China
| | - Shengyuan Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Material Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Material Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Material Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
32
|
Sun Y, Yu XA, Yang J, Gai L, Tian J, Sui X, Lu H. NIR halogenated thieno[3, 2-b]thiophene fused BODIPYs with photodynamic therapy properties in HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119027. [PMID: 33068896 DOI: 10.1016/j.saa.2020.119027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Commonly, an efficient photosensitizer usually requires a number of excellent properties, such as a larger molar absorption coefficient in the tissue transparency window, a high intersystem spin-crossing (ISC) probability induced by heavy atom and low dark toxicity as well as high photostability. In this study, NIR tetra-bromo thieno[3,2-b]thiophene-fused BODIPYs derivatives 3 was prepared, and fully characterized. Their photophysical properties have been well investigated including absorption, fluorescence profiles and photostability. The novel BODIPYs 2-3 possess long wavelength absorptions of maximum up to 720 nm with large molar absorption coefficients due to extend the effect of π-conjugation system via fusion the thieno[3,2-b]thiophene group. Especially, BODIPY 3 containing heavy atoms (four bromine atoms) exhibits photocytotoxicity upon irradiation with light NIR laser based on the results of MTT assays and flow analyses in living HeLa cells, in the meanwhile, it features lower cytotoxic in the dark. The current research work will contribute to the development of functional dyes and new organic NIR photosensitizer agents.
Collapse
Affiliation(s)
- Yijuan Sun
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China
| | - Xie-An Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jie Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Xinbing Sui
- College of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China
| |
Collapse
|
33
|
Luo X, Chen Y, Li Y, Sun Z, Zhu W, Qian X, Yang Y. Structurally-thrifty and visible-absorbing fluorophores. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118907. [PMID: 32932032 DOI: 10.1016/j.saa.2020.118907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/13/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Fluorophores with a minimal push-pull backbone are actively pursued due to their potentials in biological labelling. Herein a series of structurally-thrifty and visible-absorbing fluorophores (SDXs) were successfully constructed following the D'D-π-A design strategy, in which a secondary donor (D') was introduced in conjugation with the donor (D) to enhance its electron donating capability. For a very small scaffold, SDXs exhibit a surprisingly long-wavelength absorption band in the visible spectral range (λabs = 420 nm) and a strong green fluorescence emission (λem = 530 nm) with a fluorescence quantum yield up to 0.84. Notably, fluorescence of SDXs was quenched in hydrogen-bonding solvents, e.g. MeOH and H2O. This phenomenon renders SDXs feasibility for imaging of cellular non-hydrogen-bonding microenvironment, as demonstrated with BEAS-2B cells. These results proved that the D'D-π-A is a powerful design strategy to construct novel structurally-thrifty fluorophores.
Collapse
Affiliation(s)
- Xiao Luo
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yan Chen
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanchun Li
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenglong Sun
- Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Weihong Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
34
|
Zhou B, Guo M, Pan Q, Zhou M, Xu L, Rao Y, Wang K, Yin B, Zhou J, Song J. Rhodium-catalyzed annulation of pyrrole substituted BODIPYs with alkynes to access π-extended polycyclic heteroaromatic molecules and NIR absorption. Org Chem Front 2021. [DOI: 10.1039/d0qo01625j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of π-extended BODIPY derivatives fused with an indolizine scaffold were prepared smoothly via rhodium-catalyzed C–H functionalization/annulation. These fluorophores show significantly red-shifted absorption, reaching to the near infrared (NIR) region.
Collapse
|
35
|
Li H, Lv F, Guo X, Wu Q, Wu H, Tang B, Yu C, Wang H, Jiao L, Hao E. Direct C–H alkoxylation of BODIPY dyes via cation radical accelerated oxidative nucleophilic hydrogen substitution: a new route to building blocks for functionalized BODIPYs. Chem Commun (Camb) 2021; 57:1647-1650. [DOI: 10.1039/d0cc07961h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient C–H alkoxylation reaction between BODIPY dyes and a variety of alcohols was developed via a cation radical accelerated oxidative nucleophilic hydrogen substitution.
Collapse
|
36
|
Di L, Yang J, Tang W, Gai L, Zhou Z, Lu H. Nonsymmetric Benzo[ a]fused and Thiophene/Thieno[3,2- b]thiophene[ b]fused BODIPYs: Synthesis and Photophysical Properties. J Org Chem 2021; 86:601-608. [PMID: 33263390 DOI: 10.1021/acs.joc.0c02274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fusion of sufficient-electron heterocycle rings into the[a]/[b]-position of the BODIPY core would result in a large redshift wavelength, thus achieving red or near infrared emission. In this paper, we described the synthesis of nonsymmetric benzo[a]fused and thiophene/thieno[3,2-b]thiophene[b]fused BODIPY derivatives 2-3 while containing a reactive site, and then, 4-7 were developed by nucleophilic substitution reactions of 3 with various nucleophilic agents in high yields. X-ray crystallographic analysis of 2-7 revealed that the core structure adopted a planar geometry and π-π interactions were observed in the packing structure. BODIPYs 4 and 6-7 displayed a hypochromic shift in the absorption and bathochromic shift in the emission with increasing solvent polarity because of the formation of resonance structures resulting from the change of the C-N distance, which was rationalized by density functional theory (DFT)/time-dependent-DFT calculations.
Collapse
Affiliation(s)
- Linting Di
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jie Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Weiguo Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Zhikuan Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| |
Collapse
|
37
|
Tian S, Luo T, Zhu Y, Wan JP. Recent advances in the diversification of chromones and flavones by direct C H bond activation or functionalization. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Wu Q, Jia G, Tang B, Guo X, Wu H, Yu C, Hao E, Jiao L. Conformationally Restricted α, α Directly Linked BisBODIPYs as Highly Fluorescent Near-Infrared Absorbing Dyes. Org Lett 2020; 22:9239-9243. [DOI: 10.1021/acs.orglett.0c03441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Guowei Jia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Bing Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
39
|
Kumar PPP, Rahman A, Goswami T, Ghosh HN, Neelakandan PP. Fine-Tuning Plasmon-Molecule Interactions in Gold-BODIPY Nanocomposites: The Role of Chemical Structure and Noncovalent Interactions. Chempluschem 2020; 86:87-94. [PMID: 33058562 DOI: 10.1002/cplu.202000545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/28/2020] [Indexed: 01/06/2023]
Abstract
Strong coupling between localized surface plasmons and molecular absorptions leads to remarkable changes in the photophysical properties of dye-loaded metal nanoparticles. Here, we report supramolecular nanocomposites consisting of BODIPY, tryptophan, and gold nanoparticles, and investigate the effect of structural variations on their photophysical properties. Our results indicate that the photostability and photosensitization properties of the nanocomposites depend on the chemical composition of the BODIPY molecules. The singlet oxygen quantum yield of the nanocomposites NC1 (BODIPY, B1 bearing a single methyl group) and NC3 (BODIPY, B3 with 5 methyl and 2 iodo groups) were 0.46 and 0.42, respectively, which were significantly higher compared to their individual components. Ultrafast spectroscopy studies revealed that the migration of photoexcited BODIPY electrons to the plasmonic photoexcitation allowed electron transfer into the singlet oxygen states, thereby leading to efficient generation of singlet oxygen.
Collapse
Affiliation(s)
- P P Praveen Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, 160062, India
| | - Atikur Rahman
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, 160062, India
| | - Tanmay Goswami
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, 160062, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, 160062, India.,Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, 160062, India
| |
Collapse
|
40
|
Wu Q, Kang Z, Gong Q, Guo X, Wang H, Wang D, Jiao L, Hao E. Strategic Construction of Ethene-Bridged BODIPY Arrays with Absorption Bands Reaching the Near-Infrared II Region. Org Lett 2020; 22:7513-7517. [PMID: 32969229 DOI: 10.1021/acs.orglett.0c02704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient strategy for the controllable synthesis of BODIPY arrays based on the Stille cross-coupling reaction has been developed, from which a family of well-defined ethene-bridged BODIPY arrays from dimer to hexamer was synthesized. These arrays showed strong absorptions reaching the near-infrared II (NIR II, 1000-1700 nm) region with maxima tunable from 702 nm (dimer) to 1114 nm (hexamer) and possessed efficient light-harvesting capabilities, excellent photostability, and good photothermal conversion abilities under NIR light irradiation.
Collapse
Affiliation(s)
- Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhengxin Kang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
41
|
Wang D, Wu Q, Zhang X, Wang W, Hao E, Jiao L. A Photochemical Dehydrogenative Strategy for Direct and Regioselective Dimerization of BODIPY Dyes. Org Lett 2020; 22:7694-7698. [DOI: 10.1021/acs.orglett.0c02895] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiankang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenqing Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
42
|
Wang D, Guo X, Wu H, Wu Q, Wang H, Zhang X, Hao E, Jiao L. Visible Light Excitation of BODIPYs Enables Dehydrogenative Enamination at Their α-Positions with Aliphatic Amines. J Org Chem 2020; 85:8360-8370. [DOI: 10.1021/acs.joc.0c00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dandan Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hao Wu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiankang Zhang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
43
|
A near-infrared azadipyrromethene dye: Photophysical properties under different acidity conditions. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Lu H, Shen Z. Editorial: BODIPYs and Their Derivatives: The Past, Present and Future. Front Chem 2020; 8:290. [PMID: 32426323 PMCID: PMC7212381 DOI: 10.3389/fchem.2020.00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, China
| |
Collapse
|
45
|
Yu C, Fang X, Wu Q, Jiao L, Sun L, Li Z, So PK, Wong WY, Hao E. A Family of BODIPY-like Highly Fluorescent and Unsymmetrical Bis(BF 2) Pyrrolyl-Acylhydrazone Chromophores: BOAPY. Org Lett 2020; 22:4588-4592. [PMID: 32281804 DOI: 10.1021/acs.orglett.0c00940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new family of pyrrolyl-acylhydrazones anchored with two BF2 units, named BOAPY, have been developed as BODIPY-like and unsymmetrical bis(BF2) chromophores via a simple one-pot reaction. The easily accessible scaffold enjoys excellent diversity due to the structural versatilities of 2-formylpyrroles and acylhydrazines. BOAPYs exhibit good molar absorption coefficients, large Stokes shifts, and excellent chemical stability. More importantly, most of them display excellent fluorescence quantum yields both in solution and the solid state (up to 0.88 and 0.64, respectively).
Collapse
Affiliation(s)
- Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
| | - Xingbao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lilin Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
46
|
Feng L, Chen W, Ma X, Liu SH, Yin J. Near-infrared heptamethine cyanines (Cy7): from structure, property to application. Org Biomol Chem 2020; 18:9385-9397. [DOI: 10.1039/d0ob01962c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heptamethine cyanine dyes (Cy7) have attracted much attention in the field of biological application due to their unique structure and attractive near infrared (NIR) photophysical properties.
Collapse
Affiliation(s)
- Lan Feng
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Xiaoxie Ma
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
47
|
Lv F, Guo X, Wu H, Li H, Tang B, Yu C, Hao E, Jiao L. Direct sulfonylation of BODIPY dyes with sodium sulfinates through oxidative radical hydrogen substitution at the α-position. Chem Commun (Camb) 2020; 56:15577-15580. [DOI: 10.1039/d0cc07259a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of α-sulfonated BODIPYs were efficiently synthesized from sodium sulfinates via a radical process, and were demonstrated as new fluorescent probes for selective biothiol detection.
Collapse
Affiliation(s)
- Fan Lv
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Hao Wu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Heng Li
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| |
Collapse
|
48
|
Maity A, Sarkar A, Bhaktha B. N S, Patra SK. Design and synthesis of perfluoroalkyl decorated BODIPY dye for random laser action in a microfluidic device. NEW J CHEM 2020. [DOI: 10.1039/d0nj03108a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New and highly emissive 2,6-diacetynyl and 2,6-bis-(phenylacetynyl) functionalized pentamethyldifluoroboron-dipyrromethane (BODIPY) derivatives (FBDP1–2) with perfluorinated pendant groups at the boron center have been synthesized successfully by the combination of two strategies, extending the π-conjugation and functionalization at the boron centre.
Collapse
Affiliation(s)
- Apurba Maity
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Anirban Sarkar
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | | | - Sanjib K. Patra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
49
|
Tang Y, Xue L, Yu Q, Chen D, Cheng Z, Wang W, Shao J, Dong X. Smart Aza-BODIPY Photosensitizer for Tumor Microenvironment-Enhanced Cancer Phototherapy. ACS APPLIED BIO MATERIALS 2019; 2:5888-5897. [DOI: 10.1021/acsabm.9b00836] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yunyun Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Lei Xue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Qing Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Zijin Cheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
50
|
Miao W, Zhu Z, Li Z, Hao E, Jiao L. Novel expanded porphyrinoids with multiple-inner-ring-fusion and/or tunable aromaticity. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|