1
|
Xia F, Sinefeld D, Chang Z, Gong X, Sun Q. Simultaneous 2-photon and 3-photon excitation with a red fluorescent protein-cyanine dye probe pair in the 1700-nm excitation window for deep in vivo neurovascular imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:6670-6681. [PMID: 39679400 PMCID: PMC11640573 DOI: 10.1364/boe.534688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 12/17/2024]
Abstract
In vivo imaging of the neurovascular network is considered to be one of the most powerful approaches for understanding brain functionality. Nevertheless, simultaneously imaging the biological neural network and blood vessels in deep brain layers in a non-invasive manner remains to a major challenge due to the lack of appropriate labeling fluorescence probe pairs. Herein, we proposed a 2-photon and 3-photon fluorescence probe pair for neurovascular imaging. Specifically, the red fluorescence protein (RFP) with an absorption maximum of around 550 nm is used as a 3-photon excited probe to label neurons, and a cyanine derivative dye Q820@BSA has a NIR absorption maximum of 825 nm as a 2-photon excited probe to label the vasculature, enabling single wavelength excitation at 1650 nm for neurovascular imaging with high emission spectral separation (>250 nm). In particular, the 2-photon action cross-section of Q820@BSA was found to be about 2-fold larger than that of indocyanine green (ICG), a commonly used red 2-photon fluorescence labeling agent, at the same excitation wavelength. Benefiting from the long wavelength advantage in reducing scattering in both 2 and 3-photon excitation of the fluorescence pairs, we demonstrated in vivo neurovascular imaging in intact adult mouse brains through white matter and deep into the hippocampus in the somatosensory cortex.
Collapse
Affiliation(s)
- Fei Xia
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Present address: Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, Sorbonne Université, Collège de France, Paris, France
| | - David Sinefeld
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
- Present address: Department of Applied Physics and Electro-Optical Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Zong Chang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaojing Gong
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qinchao Sun
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Haque A, Alenezi KM, Alsukaibi AKD, Al-Otaibi AA, Wong WY. Water-Soluble Small Organic Fluorophores for Oncological Theragnostic Applications: Progress and Development. Top Curr Chem (Cham) 2024; 382:14. [PMID: 38671325 DOI: 10.1007/s41061-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Cancer is one of the major noncommunicable diseases, responsible for millions of deaths every year worldwide. Though various cancer detection and treatment modalities are available today, many deaths occur owing to its late-stage detection and metastatic nature. Noninvasive detection using luminescence-based imaging tools is considered one of the promising techniques owing to its low cost, high sensitivity, and brightness. Moreover, these tools are unique and valuable as they can detect even the slightest changes in the cellular microenvironment. To achieve this, a fluorescent probe with strong tumor uptake and high spatial and temporal resolution, especially with high water solubility, is highly demanded. Recently, several water-soluble molecules with emission windows in the visible (400-700 nm), first near-infrared (NIR-I, 700-1000 nm), and second near-infrared (NIR-II, 1000-1700 nm) windows have been reported in literature. This review highlights recently reported water-soluble small organic fluorophores/dyes with applications in cancer diagnosis and therapeutics. We systematically highlight and describe the key concepts, structural classes of fluorophores, strategies for imparting water solubility, and applications in cancer therapy and diagnosis, i.e., theragnostics. We discuss examples of water-soluble fluorescent probes based on coumarin, xanthene, boron-dipyrromethene (BODIPY), and cyanine cores. Some other emerging classes of dyes based on carbocyclic and heterocyclic cores are also discussed. Besides, emerging molecular engineering methods to obtain such fluorophores are discussed. Finally, the opportunities and challenges in this research area are also delineated.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia.
| | - Khalaf M Alenezi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Abdulmohsen Khalaf Dhahi Alsukaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Ahmed A Al-Otaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
3
|
Mata Corral MY, Alvarez DE, Poon W. Quantifying nanoparticle delivery: challenges, tools, and advances. Curr Opin Biotechnol 2024; 85:103042. [PMID: 38065039 DOI: 10.1016/j.copbio.2023.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
This review explores challenges and methods for quantifying nanoparticle delivery in therapeutic applications. We discuss three main approaches: (1) functional readouts that assess therapeutic effects post nanoparticle administration, (2) nanocarrier tracking that directly monitors the nanoparticle localization, and (3) cargo tracking that infers nanoparticle localization by measuring encapsulated agents or attached surface tags. Reanalysis of the Wilhelm et al. Cancer Nanomedicine Repository dataset found mixed quantification methodologies, which could cause misleading conclusions. We discuss potential pitfalls in each quantification approach and highlight recent advancements in novel technologies. It is important that researchers select appropriate quantification methods based on their objectives and consider integrating multiple approaches for a comprehensive understanding of in vivo nanoparticle behavior to facilitate their clinical translation.
Collapse
Affiliation(s)
- Mario Y Mata Corral
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA
| | - Damian E Alvarez
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA
| | - Wilson Poon
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA.
| |
Collapse
|
4
|
AIE nanocrystals: Emerging nanolights with ultra-high brightness for biological application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Wu CC, Li EY, Chou PT. Reducing the internal reorganization energy via symmetry controlled π-electron delocalization. Chem Sci 2022; 13:7181-7189. [PMID: 35799804 PMCID: PMC9214956 DOI: 10.1039/d2sc01851a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
The magnitude of the reorganization energy is closely related to the nonradiative relaxation rate, which affects the photoemission quantum efficiency, particularly for the emission with a lower energy gap toward the near IR (NIR) region. In this study, we explore the relationship between the reorganization energy and the molecular geometry, and hence the transition density by computational methods using two popular models of NIR luminescent materials: (1) linearly conjugated cyanine dyes and (2) electron donor-acceptor (D-A) composites with various degrees of charge transfer (CT) character. We find that in some cases, reorganization energies can be significantly reduced to 50% despite slight structural modifications. Detailed analyses indicate that the reflection symmetry plays an important role in linear cyanine systems. As for electron donor-acceptor systems, both the donor strength and the substitution position affect the relative magnitude of reorganization energies. If CT is dominant and creates large spatial separation between HOMO and LUMO density distributions, the reorganization energy is effectively increased due to the large electron density variation between S0 and S1 states. Mixing a certain degree of local excitation (LE) with CT in the S1 state reduces the reorganization energy. The principles proposed in this study are also translated into various pathways of canonically equivalent π-conjugation resonances to represent intramolecular π-delocalization, the concept of which may be applicable, in a facile manner, to improve the emission efficiency especially in the NIR region.
Collapse
Affiliation(s)
- Chi-Chi Wu
- Department of Chemistry, National Taiwan Normal University No. 88, Section 4, Tingchow Road Taipei 116 Taiwan
| | - Elise Y Li
- Department of Chemistry, National Taiwan Normal University No. 88, Section 4, Tingchow Road Taipei 116 Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University No. 1, Section 4, Roosevelt Road Taipei 106 Taiwan
| |
Collapse
|
6
|
Zhang S, Sun Y, Liu W, Feng W, Zhang M, Li Z, Yu M. Coumarin-based fluorescent probes toward viscosity in mitochondrion/lysosome. Anal Biochem 2022; 652:114752. [PMID: 35654133 DOI: 10.1016/j.ab.2022.114752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023]
Abstract
Viscosity is an important microenvironmental indicator that plays an important role in the process of information transmission in various regions. Herein, two coumarin-based viscosity-sensitive fluorescent probes (CHB, CHN) were synthesized and the photophysical properties of the two probes were studied. The fluorescence quantum yields of CHB and CHN in glycerol can be as high as 25.2% and 18.3% respectively. The two probes can linearly detect viscosity in the viscosity logarithm range of 0.83-2.07, which is not interfered with pH, metal ions, anions and biomolecules. Fluorescent confocal cell experiments show CHB and CHN have good targeting ability to mitochondrion, lysosome, Endoplasmic reticulum and Golgi apparatus, and can be used to detect viscosity in mitochondrion/lysosome.
Collapse
Affiliation(s)
- Shen Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yishuo Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Wenjie Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Feng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Meng Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Shi H, Xiong B, Chen Y, Lin C, Gu J, Zhu Y, Wang J. A fan-shaped synthetic chiral nanographene. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proc Natl Acad Sci U S A 2022; 119:2121982119. [PMID: 35193966 PMCID: PMC8872805 DOI: 10.1073/pnas.2121982119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 01/02/2023] Open
Abstract
Photoacoustic (PA) imaging offers promise for biomedical applications due to its ability to image deep within biological tissues while providing detailed molecular information; however, its detection sensitivity is limited by high background signals that arise from endogenous chromophores. Genetic reporter proteins with photoswitchable properties enable the removal of background signals through the subtraction of PA images for each light-absorbing form. Unfortunately, the application of photoswitchable chromoproteins for tumor-targeted imaging has been hampered by the lack of an effective targeted delivery scheme; that is, photoswitchable probes must be delivered in vivo with high targeting efficiency and specificity. To overcome this limitation, we have developed a tumor-targeting delivery system in which tumor-homing bacteria (Escherichia coli) are exploited as carriers to affect the point-specific delivery of genetically encoded photochromic probes to the tumor area. To improve the efficiency of the desired background suppression, we engineered a phytochrome-based reporter protein (mDrBphP-PCMm/F469W) that displays higher photoswitching contrast than those in the current state of the art. Photoacoustic computed tomography was applied to achieve good depth and resolution in the context of in vivo (mice) imaging. The present system effectively integrates a genetically encoded phytochrome-based reporter protein, PA imaging, and synthetic biology (GPS), to achieve essentially background-suppressed tumor-targeted PA monitoring in deep-seated tissues. The ability to image tumors at substantial depths may enable target-specific cancer diagnoses to be made with greater sensitivity, fidelity, and specificity.
Collapse
|
9
|
An F, Xin J, Deng C, Tan X, Aras O, Chen N, Zhang X, Ting R. Facile synthesis of near-infrared bodipy by donor engineering for in vivo tumor targeted dual-modal imaging. J Mater Chem B 2021; 9:9308-9315. [PMID: 34714318 PMCID: PMC8616829 DOI: 10.1039/d1tb01883c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bodipy is one of the most popular dyes for bioimaging, however, a complicated synthetic protocol is needed to create and isolate ideal near-infrared (NIR) emissive Bodipy derivatives for optical bioimaging. It is noticed that the donor species impact the wavelength when the π-conjugation system of green light emissive Bodipy is elongated via a one-step reaction. Herein, several Bodipy dyes bearing different common donors are synthesized. Their optical properties confirm that both absorption and emission peaks of the synthesized Bodipy could be tuned to NIR wavelength by using stronger donors via a facile reaction. The synthesized monocarboxyl Bodipy could conjugate with aminated PEG to yield an amphiphilic polymer, which further self-assembles into a NIR nanoparticle (NP). The NIR NP exhibits preferential tumor accumulation via the enhanced permeation and retention (EPR) effect, making it useful for tumor diagnosis by both fluorescence imaging and photoacoustic tomography.
Collapse
Affiliation(s)
- Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi, People's Republic of China
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medical College, 413 East 69th Street, New York, NY 10065, USA.
| | - Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xiaofang Tan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, Jiangsu, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nandi Chen
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medical College, 413 East 69th Street, New York, NY 10065, USA.
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medicine College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China.
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Richard Ting
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medical College, 413 East 69th Street, New York, NY 10065, USA.
- Antelope Surgical, Biolabs@NYULangone, 180 Varick St. Fl 6, New York, NY 10014, USA
| |
Collapse
|
10
|
Li S, Zheng X, Huang C, Cao Y. Titanate nanofibers reduce Kruppel-like factor 2 (KLF2)-eNOS pathway in endothelial monolayer: A transcriptomic study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Liu W, Miao L, Li X, Xu Z. Development of fluorescent probes targeting the cell wall of pathogenic bacteria. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
|
13
|
Zhu P, Zhang T, Li J, Ma J, Ouyang X, Zhao X, Xu M, Wang D, Xu Q. Near-infrared emission Cu, N-doped carbon dots for human umbilical vein endothelial cell labeling and their biocompatibility in vitro. J Appl Toxicol 2020; 41:789-798. [PMID: 33269515 DOI: 10.1002/jat.4119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023]
Abstract
Quantum dots (QDs) are luminescent semiconductor nanomaterials (NMs) with various biomedical applications, but the high toxicity associated with traditional QDs, such as Cd-based QDs, limits their uses in biomedicine. As such, the development of biocompatible metal-free QDs has gained extensive research interests. In this study, we synthesized near-infrared emission Cu, N-doped carbon dots (CDs) with optimal emission at 640 nm and a fluorescence quantum yield of 27.1% (in N,N-dimethylformamide [DMF]) by solvothermal method using o-phenylenediamine and copper acetate monohydrate. We thoroughly characterized the CDs and showed that they were highly fluorescent and stable under different conditions, although in highly acidic (pH = 1-2) or alkaline (pH = 12-13) solutions, a redshift or blueshift of fluorescence emission peak of Cu, N-doped CDs was also observed. When exposed to human umbilical vein endothelial cells (HUVECs), Cu, N-doped CDs only significantly induced cytotoxicity at very high concentrations (100 or 200 μg/ml), but their cytotoxicity appeared to be comparable with carbon black (CB) nanoparticles (NPs) at the same mass concentrations. As the mechanisms, 200 μg/ml Cu, N-doped CDs and CB NPs promoted endoplasmic reticulum (ER) stress proteins IRE1α and chop, leading to increased cleaved caspase 3/pro-caspase 3 ratio, but CB NPs were more effective. At noncytotoxic concentration (50 μg/ml), Cu, N-doped CDs successfully labeled HUVECs. In summary, we successfully prepared highly fluorescent and relatively biocompatible CDs to label HUVECs in vitro.
Collapse
Affiliation(s)
- Peide Zhu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Ting Zhang
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jianxiong Li
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Junfei Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Xiangcheng Ouyang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Xuelin Zhao
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Meng Xu
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| |
Collapse
|
14
|
Qiu W, Li X, Shi D, Li X, Gao Y, Li J, Mao F, Guo Y, Li J. A rapid-response near-infrared fluorescent probe with a large Stokes shift for senescence-associated β-galactosidase activity detection and imaging of senescent cells. DYES AND PIGMENTS 2020; 182:108657. [DOI: 10.1016/j.dyepig.2020.108657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Gu M, Dai Z, Yan X, Ma J, Niu Y, Lan W, Wang X, Xu Q. Comparison of toxicity of Ti
3
C
2
and Nb
2
C Mxene quantum dots (QDs) to human umbilical vein endothelial cells. J Appl Toxicol 2020; 41:745-754. [DOI: 10.1002/jat.4085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manyu Gu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
- Key Laboratory of Environment‐Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry Xiangtan University Xiangtan China
| | - Zhiqi Dai
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
- Key Laboratory of Environment‐Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry Xiangtan University Xiangtan China
| | - Xiang Yan
- School of Materials Science and Engineering Baise University Baise China
| | - Junfei Ma
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| | - Yingchun Niu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| | - Wenjie Lan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| | - Xin Wang
- PLA Strategic Support Force Characteristic Medical Center Beijing China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| |
Collapse
|
16
|
Miao L, Liu W, Qiao Q, Li X, Xu Z. Fluorescent antibiotics for real-time tracking of pathogenic bacteria. J Pharm Anal 2020; 10:444-451. [PMID: 33133728 PMCID: PMC7591806 DOI: 10.1016/j.jpha.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023] Open
Abstract
The harm of pathogenic bacteria to humans has promoted extensive research on physiological processes of pathogens, such as the mechanism of bacterial infection, antibiotic mode of action, and bacterial antimicrobial resistance. Most of these processes can be better investigated by timely tracking of fluorophore-derived antibiotics in living cells. In this paper, we will review the recent development of fluorescent antibiotics featuring the conjugation with various fluorophores, and focus on their applications in fluorescent imaging and real-time detection for various physiological processes of bacteria in vivo. Profiles of Fluorophores-derived Antibiotics in Development. Discussing the influence on antibiotic activity after conjugating fluorophore. Fluorescent Tracking to better understand physiological processes of Pathogenic bacteria. Live-Cell imaging to investigate bacteria in their native environment.
Collapse
Affiliation(s)
- Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weiwei Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaolian Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
17
|
Zhang C, Hao Y. Selective Near-Infrared Fluorescent Probe for Monitoring Thiophenol in Real Water Samples and Living Cells. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1802737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chunyan Zhang
- Shanxi Railway Vocational and Technical College, Taiyuan, China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
18
|
Ma X, Zhang C, Feng L, Liu SH, Tan Y, Yin J. Construction and bioimaging application of novel indole heptamethine cyanines containing functionalized tetrahydropyridine rings. J Mater Chem B 2020; 8:9906-9912. [DOI: 10.1039/d0tb01890b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IR780 as a commercially available dye with near-infrared emission has been extensively applied in fluorescent probes and bioimaging.
Collapse
Affiliation(s)
- Xiaoxie Ma
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Lan Feng
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| |
Collapse
|