1
|
Photoisomerization, assembling and fluorescence photoswitching behaviors of a water-soluble stiff-stilbene with cucurbit[7]uril. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
2
|
Deng T, Zhao J, Peng D, He X, Huang XA, Lin C, Zhu C, Wang L, Liu F. Probing the serum albumin binding site of fenamates and photochemical protein labeling with a fluorescent dye. Org Biomol Chem 2022; 20:5076-5085. [PMID: 35697330 DOI: 10.1039/d2ob00717g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human serum albumin (HSA) can bind with numerous drugs, leading to a significant influence on drug pharmacokinetics as well as undesirable drug-drug interactions due to competitive binding. Probing the HSA drug binding site thus offers great opportunities to reveal drug-HSA binding profiles. In the present study, a fluorescent probe (E)-4-(2-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)vinyl)-1-propylpyridin-1-ium (TTPy) has been prepared, which exhibits enhancement of deep-red to near-infrared (NIR) fluorescence upon HSA binding. The competitive binding assay indicated that TTPy can target the HSA binding site of fenamates, a group of non-steroidal anti-inflammatory drugs (NSAIDs), with moderate binding affinity (1.95 × 106 M-1 at 303 K). More interestingly, TTPy enables fluorescent labeling of HSA upon visible light irradiation. This study provides promising ways for HSA drug binding site identification and photochemical protein labeling.
Collapse
Affiliation(s)
- Tao Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.,Lingnan Medical Research Center, the first Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Jing Zhao
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Danfeng Peng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Xin-An Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.,Lingnan Medical Research Center, the first Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
| | - Lei Wang
- Department of Cardiology, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
| |
Collapse
|
3
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
4
|
Chao S, Shen Z, Pei Y, Pei Z. Covalently bridged pillararene-based oligomers: from construction to applications. Chem Commun (Camb) 2021; 57:10983-10997. [PMID: 34604891 DOI: 10.1039/d1cc04547d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalently bridged pillararene-based oligomers (CBPOs) are formed by covalent bonding of pillararene monomers, and they play a critical role in expanding the multi-disciplinary application of pillararenes due to their excellent molecular complexing ability, specially designed geometry and multifunctional linking groups. This article provides a comprehensive review of the synthesis and applications of CBPOs. The design and synthetic strategies of a series of CBPOs (dimers, trimers, tetramers and others) are first introduced. Many CBPOs with multi-cavities and unique geometry are very attractive and efficient building blocks for constructing novel smart supramolecular polymers (SPs) with different topological structures through host-guest interactions. We describe the methods of constructing various SPs based on CBPOs in detail. Furthermore, the extensive applications of CBPOs and CBPO-based SPs in recognition and detection of ions and organic small molecules, selective adsorption and separation, artificial light-harvesting systems, catalysis, drug delivery systems, and others are systematically introduced. Finally, the future challenges and perspectives for CBPOs are also highlighted.
Collapse
Affiliation(s)
- Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| |
Collapse
|
5
|
Acikbas Y, Aksoy M, Aksoy M, Karaagac D, Bastug E, Kursunlu AN, Erdogan M, Capan R, Ozmen M, Ersoz M. Recent progress in pillar[n]arene-based thin films on chemical sensor applications. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01059-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|