1
|
Wu M, Xiao Y, Wu R, Lei J, Li T, Zheng Y. Aggregable gold nanoparticles for cancer photothermal therapy. J Mater Chem B 2024; 12:8048-8061. [PMID: 39046068 DOI: 10.1039/d4tb00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Photothermal therapy (PTT) is an important non-invasive cancer treatment method. Enhancing the photothermal conversion efficiency (PCE) of photothermal agents (PTAs) and prolonging their tumor accumulation and retention are effective strategies to enhance the efficiency of cancer PTT. Recently, tremendous progress has been made in developing stimuli-responsive aggregable gold nanoparticles as effective PTAs for PTT. In this review, we discuss the chemical principles underlying gold nanoparticle aggregation and highlight the progress in gold nanoparticle aggregation triggered by different stimuli, especially tumor microenvironment-related factors, for cancer PTT. Covalent condensation reactions, click cycloaddition reactions, chelation reactions, and Au-S bonding, as well as non-covalent electrostatic interactions, hydrophobic interactions, hydrogen bonding, and van der Waals forces play key roles in the aggregation of gold nanoparticles. Enzymes, pH, reactive oxygen species, small molecules, salts, and light drive the occurrence of gold nanoparticle aggregation. Targeted aggregation of gold nanoparticles prolongs tumor accumulation and retention of PTAs and improves PCE, resulting in enhanced tumor PTT. Moreover, the major challenges of aggregable gold nanoparticles as PTAs are pointed out and the promising applications are also prospected at the end. With the deepening of research, we expect aggregable gold nanoparticles to become essential PTAs for tumor therapy.
Collapse
Affiliation(s)
- Mingyu Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yao Xiao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Rongkun Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jiaojiao Lei
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Tian Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Kang H, Meng F, Liu F, Xie M, Lai H, Li P, Zhang X. Nanomedicines Targeting Ferroptosis to Treat Stress-Related Diseases. Int J Nanomedicine 2024; 19:8189-8210. [PMID: 39157732 PMCID: PMC11328858 DOI: 10.2147/ijn.s476948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Ferroptosis, a unique form of regulated cell death driven by iron-dependent lethal lipid peroxidation, is implicated in various stress-related diseases like neurodegeneration, vasculopathy, and metabolic disturbance. Stress-related diseases encompass widespread medical disorders that are influenced or exacerbated by stress. These stressors can manifest in various organ or tissue systems and have significant implications for human overall health. Understanding ferroptosis in these diseases offers insights for therapeutic strategies targeting relevant pathways. This review explores ferroptosis mechanisms, its role in pathophysiology, its connection to stress-related diseases, and the potential of ferroptosis-targeted nanomedicines in treating conditions. This monograph also delves into the engineering of ferroptosis-targeted nanomedicines for tackling stress-related diseases, including cancer, cardia-cerebrovascular, neurodegenerative, metabolic and inflammatory diseases. Anyhow, nanotherapy targeting ferroptosis holds promise by both promoting and suppressing ferroptosis for managing stress-related diseases.
Collapse
Affiliation(s)
- Hao Kang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Anhui College of Traditional Chinese Medicine, Wuhu, People’s Republic of China
- Wuhu Modern Technology Research and Development Center of Chinese Medicine and Functional Food, Wuhu, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Fengjie Liu
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Mengjie Xie
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Pengfei Li
- Department of Oncology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Lin Z, Wang Y, Li W, Sun F, Lv Q, Zhang S, Liu X, Qin F, Luo C. A natural compound-empowered podophyllotoxin prodrug nanoassembly magnifies efficacy-toxicity benefits in cancer chemotherapy. Asian J Pharm Sci 2024; 19:100892. [PMID: 39246509 PMCID: PMC11374962 DOI: 10.1016/j.ajps.2024.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 09/10/2024] Open
Abstract
Small-molecule prodrug nanoassembly technology with a unique advantage in off-target toxicity reduction has been widely used for antitumor drug delivery. However, prodrug activation remains a rate-limiting step for exerting therapeutic actions, which requires to quickly reach the minimum valid concentrations of free drugs. Fortunately, we find that a natural compound (BL-193) selectively improves the chemotherapy sensitivity of breast cancer cells to podophyllotoxin (PPT) at ineffective dose concentrations. Based on this, we propose to combine prodrug nanoassembly with chemotherapy sensitization to fully unleash the chemotherapeutic potential of PPT. Specifically, a redox-sensitive prodrug (PSSF) of PPT is synthesized by coupling 9-fluorenyl-methanol (Fmoc-OH) with PPT linked via disulfide bond. Intriguingly, PSSF with a π-conjugated structure readily co-assembles with BL-193 into stable nanoassembly. Significantly, BL-193 serves as an excellent chemosensitizer that creates an ultra-low-dose chemotherapeutic window for PPT. Moreover, prodrug design and precise hybrid nanoassembly well manage off-target toxicity. As expected, such a BL-193-empowered prodrug nanoassembly elicits potent antitumor responses. This study offers a novel paradigm to magnify chemotherapy efficacy-toxicity benefits.
Collapse
Affiliation(s)
- Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenwen Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Qin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
4
|
Li D, Zhang R, Le Y, Zhang T, Luo D, Zhang H, Li J, Zhao R, Hu Y, Kong X. Organoid-Based Assessment of Metal-Organic Framework (MOF) Nanomedicines for Ex Vivo Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33070-33080. [PMID: 38904394 DOI: 10.1021/acsami.4c05172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Nanomaterials have been extensively exploited in tumor treatment, leading to numerous innovative strategies for cancer therapy. While nanomedicines present immense potential, their application in cancer therapy is characterized by significant complexity and unpredictability, especially regarding biocompatibility and anticancer efficiency. These considerations underscore the essential need for the development of ex vivo research models, which provide invaluable insights and understanding into the biosafety and efficacy of nanomedicines in oncology. Fortunately, the emergence of organoid technology offers a novel approach to the preclinical evaluation of the anticancer efficacy of nanomedicines in vitro. Hence, in this study, we constructed intestine and hepatocyte organoid models (Intestine-orgs and Hep-orgs) for assessing intestinal and hepatic toxicity at the microtissue level. We utilized three typical metal-organic frameworks (MOFs), ZIF-8, ZIF-67, and MIL-125, as nanomedicines to further detect their interactions with organoids. Subsequently, the MIL-125 with biocompatibility loaded methotrexate (MTX), forming the nanomedicine (MIL-125-PEG-MTX), indicated a high loading efficiency (82%) and a well-release capability in an acid microenvironment. More importantly, the anticancer effect of the nanomedicine was investigated using an in vitro patient-derived organoids (PDOs) model, achieving inhibition rates of 48% and 78% for PDO-1 and PDO-2, respectively, demonstrating that PDOs could predict clinical response and facilitate prospective therapeutic selection. These achievements presented great potential for organoid-based ex vivo models for nano theragnostic evaluation in biosafety and function.
Collapse
Affiliation(s)
- Dan Li
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rui Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yinpeng Le
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ting Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Dandan Luo
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Han Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Ruibo Zhao
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yeting Hu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Xiangdong Kong
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
5
|
Shi L, Zhu M, Long R, Wang S, Wang P, Liu Y. Prussian blue nanoparticle-based pH-responsive self-assembly for enhanced photothermal and chemotherapy of tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112938. [PMID: 38761749 DOI: 10.1016/j.jphotobiol.2024.112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
In recent years, there has been growing interest in size-transformable nanoplatforms that exhibit active responses to acidic microenvironments, presenting promising prospects in the field of nanomedicine for tumor therapy. However, the design and fabrication of such size-adjustable nanotherapeutics pose significant challenges compared to size-fixed nanocomposites, primarily due to their distinct pH-responsive requirements. In this study, we developed pH-activated-aggregating nanosystems to integrate chemotherapy and photothermal therapy by creating size-transformable nanoparticles based on Prussian blue nanoparticles (PB NPs) anchored with acid-responsive polyoxometalates (POMs) quantum dots via electrostatic interactions (PPP NPs). Subsequently, we utilized doxorubicin (DOX) as a representative drug to formulate PPPD NPs. Notably, PPPD NPs exhibited a significant response to acidic conditions, resulting in changes in surface charge and rapid aggregation of PPP NPs. Furthermore, the aggregated PPP NPs demonstrated excellent photothermal properties under near-infrared laser irradiation. Importantly, PPPD NPs prolonged their retention time in tumor cells via a size-transformation approach. In vitro cellular assays revealed that the anticancer efficacy of PPPD NPs was significantly enhanced. The IC50 values for the PPPD NPs groupand the PPPD NPs + NIR group were 50.11 μg/mL and 30.9 μg/mL. Overall, this study introduces a novel strategy for cancer therapy by developing size-aggregating nano-drugs with stimuli-responsive properties, holding promise for improved therapeutic outcomes in future combination approaches involving photothermal therapy and chemotherapy.
Collapse
Affiliation(s)
- Linrong Shi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Mingzhi Zhu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Shibin Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| |
Collapse
|
6
|
Yuan X, Liu X, Li H, Peng S, Huang H, Yu Z, Chen L, Liu X, Bai J. pH-Triggered Transformable Peptide Nanocarriers Extend Drug Retention for Breast Cancer Combination Therapy. Adv Healthc Mater 2024; 13:e2400031. [PMID: 38588449 DOI: 10.1002/adhm.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Increasing the penetration and accumulation of antitumor drugs at the tumor site are crucial in chemotherapy. Smaller drug-loaded nanoparticles (NPs) typically exhibit increased tumor penetration and more effective permeation through the nuclear membrane, whereas larger drug-loaded NPs show extended retention at the tumor site. In addition, cancer stem cells (CSCs) have unlimited proliferative potential and are crucial for the onset, progression, and metastasis of cancer. Therefore, a drug-loaded amphiphilic peptide, DDP- and ATRA-loaded Pep1 (DA/Pep1), is designed that self-assembles into spherical NPs upon the encapsulation of cis-diamminedichloroplatinum (DDP) and all-trans retinoic acid (ATRA). In an acidic environment, DA/Pep1 transforms into aggregates containing sheet-like structures, which significantly increases drug accumulation at the tumor site, thereby increasing antitumor effects and inhibiting metastasis. Moreover, although DDP treatment can increase the number of CSCs present, ATRA can induce the differentiation of CSCs in breast cancer to increase the therapeutic effect of DDP. In conclusion, this peptide nanodelivery system that transforms in response to the acidic tumor microenvironment is an extremely promising nanoplatform that suggests a new idea for the combined treatment of tumors.
Collapse
Affiliation(s)
- Xiaomeng Yuan
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Xiaoying Liu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Hongjie Li
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Shan Peng
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Haiqin Huang
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Zhe Yu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Limei Chen
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Xinlu Liu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| |
Collapse
|
7
|
Jiang X, Xu S, Miao Y, Huang K, Wang B, Ding B, Zhang Z, Zhao Z, Zhang X, Shi X, Yu M, Tian F, Gan Y. Curvature-mediated rapid extravasation and penetration of nanoparticles against interstitial fluid pressure for improved drug delivery. Proc Natl Acad Sci U S A 2024; 121:e2319880121. [PMID: 38768353 PMCID: PMC11145294 DOI: 10.1073/pnas.2319880121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Elevated interstitial fluid pressure (IFP) within pathological tissues (e.g., tumors, obstructed kidneys, and cirrhotic livers) creates a significant hindrance to the transport of nanomedicine, ultimately impairing the therapeutic efficiency. Among these tissues, solid tumors present the most challenging scenario. While several strategies through reducing tumor IFP have been devised to enhance nanoparticle delivery, few approaches focus on modulating the intrinsic properties of nanoparticles to effectively counteract IFP during extravasation and penetration, which are precisely the stages obstructed by elevated IFP. Herein, we propose an innovative solution by engineering nanoparticles with a fusiform shape of high curvature, enabling efficient surmounting of IFP barriers during extravasation and penetration within tumor tissues. Through experimental and theoretical analyses, we demonstrate that the elongated nanoparticles with the highest mean curvature outperform spherical and rod-shaped counterparts against elevated IFP, leading to superior intratumoral accumulation and antitumor efficacy. Super-resolution microscopy and molecular dynamics simulations uncover the underlying mechanisms in which the high curvature contributes to diminished drag force in surmounting high-pressure differentials during extravasation. Simultaneously, the facilitated rotational movement augments the hopping frequency during penetration. This study effectively addresses the limitations posed by high-pressure impediments, uncovers the mutual interactions between the physical properties of NPs and their environment, and presents a promising avenue for advancing cancer treatment through nanomedicine.
Collapse
Affiliation(s)
- Xiaohe Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sai Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yunqiu Miao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kang Huang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bingqi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingwen Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zitong Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falin Tian
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Medical Products Administration Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
8
|
Gong Z, Zhao H, Bai J. pH-responsive drug-loaded peptides enhance drug accumulation and promote apoptosis in tumor cells. Colloids Surf B Biointerfaces 2024; 239:113954. [PMID: 38744076 DOI: 10.1016/j.colsurfb.2024.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
The efficacy of chemotherapeutic drugs in tumor treatment is limited by their toxicity and side effects due to their inability to selectively accumulate in tumor tissue. In addition, chemotherapeutic agents are easily pumped out of tumor cells, resulting in their inadequate accumulation. To overcome these challenges, a drug delivery system utilizing the amphiphilic peptide Pep1 was designed. Pep1 can self-assemble into spherical nanoparticles (PL/Pep1) and encapsulate paclitaxel (PTX) and lapatinib (LAP). PL/Pep1 transformed into nanofibers in an acidic environment, resulting in longer drug retention and higher drug concentrations within tumor cells. Ultimately, PL/Pep1 inhibited tumor angiogenesis and enhanced tumor cell apoptosis. The use of shape-changing peptides as drug carriers to enhance cancer cell apoptosis is promising.
Collapse
Affiliation(s)
- Zhongying Gong
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao, China
| | - Hongxia Zhao
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
9
|
Li K, Chen W, Ma L, Yan L, Wang B. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117264. [PMID: 37776941 DOI: 10.1016/j.envres.2023.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Nanoparticles are fascinating and encouraging carriers for cancer treatment due to their extraordinary properties and potential applications in targeted drug delivery, treatment, and diagnosis. Experimental studies including in vitro and in vivo examinations show that nanoparticles can cause a revolution in different aspects of cancer therapy. Normal tissue toxicity and early and late consequences are the major limitations of cancer therapy by radiotherapy and chemotherapy. However, the delivery of drugs into tumors or reducing the accumulation of drugs in normal tissues can permit a more satisfactory response of malignancies to therapy with more inferior side effects. Cardiac toxicity is one of the major problems for chemotherapy and radiotherapy. Therefore, several experimental studies have been performed to minimize the degenerative impacts of cancer treatment on the heart and also enhance the influences of radiotherapy and chemotherapy agents in cancers. This review article emphasizes the benefits of nanoparticle-based drug delivery techniques, including minimizing the exposure of the heart to anticancer drugs, enhancing the accumulation of drugs in cancers, and expanding the effectiveness of radiotherapy. The article also discusses the challenges and problems accompanied with nanoparticle-based drug delivery techniques such as toxicity, which need to be addressed through further research. Moreover, the article emphasizes the importance of developing safe and effective nanoparticle-based therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Ketao Li
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing, 400051, China
| | - Liping Ma
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Laixing Yan
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Bing Wang
- Department of Cardiology, Zouping People's Hospital, Zouping, shandong, 256299, China.
| |
Collapse
|
10
|
Hu S, Zhang P, Cheng Q, Zhang L, Wu W, Sun J, Shan T, Liang G, Li J. Codelivery of CuS and DOX into Deep Tumors with Size and Charge-Switchable PAMAM Dendrimers for Chemo-photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53273-53282. [PMID: 37936291 DOI: 10.1021/acsami.3c12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Accurate targeting of therapeutic agents to specific tumor tissues, especially via deep tumor penetration, has been an effective strategy in cancer treatments. Here, we described a flexible nanoplatform, pH-responsive zwitterionic acylsulfonamide betaine-functionalized fourth-generation PAMAM dendrimers (G4-AB), which presented multiple advantages for chemo-photothermal therapy, including template synthesis of ultrasmall copper sulfide (CuS) nanoparticles and further encapsulation of doxorubicin (DOX) (G4-AB-DOX/CuS), long-circulating performance by a relatively large size and zwitterionic surface in a physiological environment, combined size shrinkage, and charge conversions via pH-responsive behavior in an acidic tumor microenvironment (TME). Accordingly, high tumor penetration and positive cell uptake for CuS and DOX have been determined, which triggered an excellent combination treatment under near-infrared irradiation in comparison to the monochemotherapy system and irresponsive chemo-photothermal system. Our study represented great promise in constructing multifunctional carriers for the effective delivery of photothermal nanoparticles and drugs in chemo-photothermal therapy.
Collapse
Affiliation(s)
- Shumin Hu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, P. R. China
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou 450008, P. R. China
| | - Panpan Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, P. R. China
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, P. R. China
- Henan Engineering Research Center of Intelligent Biomaterials, Henan University of Science and Technology, Luoyang 471003, P. R. China
| | - Leitao Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, P. R. China
- Henan Engineering Research Center of Intelligent Biomaterials, Henan University of Science and Technology, Luoyang 471003, P. R. China
| | - Wenlan Wu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang 471003, P. R. China
| | - Jiachun Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Tanyou Shan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Gaofeng Liang
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou 450008, P. R. China
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang 471003, P. R. China
| | - Junbo Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, P. R. China
- Henan Engineering Research Center of Intelligent Biomaterials, Henan University of Science and Technology, Luoyang 471003, P. R. China
| |
Collapse
|
11
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Song Q, Yang J, Wu X, Li Y, Zhao H, Feng Q, Zhang Z, Zhang Y, Wang L. A multifunctional integrated biomimetic spore nanoplatform for successively overcoming oral biological barriers. J Nanobiotechnology 2023; 21:302. [PMID: 37641137 PMCID: PMC10463901 DOI: 10.1186/s12951-023-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The biological barriers have seriously restricted the efficacious responses of oral delivery system in diseases treatment. Utilizing a carrier based on the single construction means is hard to overcome these obstacles simultaneously because the complex gastrointestinal tract environment requires carrier to have different or even contradictory properties. Interestingly, spore capsid (SC) integrates many unique biological characteristics, such as high resistance, good stability etc. This fact offers a boundless source of inspiration for the construction of multi-functional oral nanoplatform based on SC without further modification. Herein, we develop a type of biomimetic spore nanoplatform (SC@DS NPs) to successively overcome oral biological barriers. Firstly, doxorubicin (DOX) and sorafenib (SOR) are self-assembled to form carrier-free nanoparticles (DS NPs). Subsequently, SC is effectively separated from probiotic spores and served as a functional vehicle for delivering DS NPs. As expect, SC@DS NPs can efficaciously pass through the rugged stomach environment after oral administration and further be transported to the intestine. Surprisingly, we find that SC@DS NPs exhibit a significant improvement in the aspects of mucus penetration and transepithelial transport, which is related to the protein species of SC. This study demonstrates that SC@DS NPs can efficiently overcome multiple biological barriers and improve the therapeutic effect.
Collapse
Affiliation(s)
- Qingling Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China
| | - Junfei Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
| | - Xiaocui Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
| | - Yao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
| | - Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China
| | - Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China.
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
13
|
Cai R, Zhang L, Chi H. Recent development of polymer nanomicelles in the treatment of eye diseases. Front Bioeng Biotechnol 2023; 11:1246974. [PMID: 37600322 PMCID: PMC10436511 DOI: 10.3389/fbioe.2023.1246974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
The eye, being one of the most intricate organs in the human body, hosts numerous anatomical barriers and clearance mechanisms. This highlights the importance of devising a secure and efficacious ocular medication delivery system. Over the past several decades, advancements have been made in the development of a nano-delivery platform based on polymeric micelles. These advancements encompass diverse innovations such as poloxamer, chitosan, hydrogel-encapsulated micelles, and contact lenses embedded with micelles. Such technological evolutions allow for sustained medication retention and facilitate enhanced permeation within the eye, thereby standing as the avant-garde in ocular medication technology. This review provides a comprehensive consolidation of ocular medications predicated on polymer nanomicelles from 2014 to 2023. Additionally, it explores the challenges they pose in clinical applications, a discussion intended to aid the design of future clinical research concerning ocular medication delivery formulations.
Collapse
Affiliation(s)
- Ruijun Cai
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Ling Zhang
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Hao Chi
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
14
|
Tong F, Zhou Y, Xu Y, Chen Y, Yudintceva N, Shevtsov M, Gao H. Supramolecular nanomedicines based on host-guest interactions of cyclodextrins. EXPLORATION (BEIJING, CHINA) 2023; 3:20210111. [PMID: 37933241 PMCID: PMC10624390 DOI: 10.1002/exp.20210111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/09/2023] [Indexed: 11/08/2023]
Abstract
In the biomedical and pharmaceutical fields, cyclodextrin (CD) is undoubtedly one of the most frequently used macrocyclic compounds as the host molecule because it has good biocompatibility and can increase the solubility, bioavailability, and stability of hydrophobic drug guests. In this review, we generalized the unique properties of CDs, CD-related supramolecular nanocarriers, supramolecular controlled release systems, and targeting systems based on CDs, and introduced the paradigms of these nanomedicines. In addition, we also discussed the prospects and challenges of CD-based supramolecular nanomedicines to facilitate the development and clinical translation of these nanomedicines.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yuxiu Chen
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| |
Collapse
|
15
|
Yin L, Li X, Wang R, Zeng Y, Zeng Z, Xie T. Recent Research Progress of RGD Peptide–Modified Nanodrug Delivery Systems in Tumor Therapy. Int J Pept Res Ther 2023; 29:53. [DOI: 10.1007/s10989-023-10523-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractThere have been great advancements in targeted nanodrug delivery systems for tumor therapy. Liposomes, polymeric nanoparticles, and inorganic nanoparticles are commonly employed as nanocarriers for drug delivery, and it has been found that arginine glycine aspartic acid (RGD) peptides and their derivatives can be used as ligands of integrin receptors to enhance the direct targeting ability. In this paper, we review the recent applications of RGD-modified liposomes, polymeric nanoparticles, and inorganic nanocarriers in cancer diagnosis and treatment, discuss the current challenges and prospects, and examine the progress made by the latest research on RGD peptide–modified nano delivery systems in cancer therapy. In recent years, RGD peptide–modified nanodrug delivery systems have been proven to have great potential in tumor therapy. Finally, we provide an overview of the current limitations and future directions of RGD peptide–modified nano-drug delivery systems for cancer therapy. This review aims to elucidate the contribution of RGD peptide–modified nanodrug delivery systems in the field of tumor therapy.
Collapse
|
16
|
Liu Y, Wang X, Wang Z, Liao R, Qiu Q, Wang Y, Luo C. Reduction-Responsive Stearyl Alcohol-Cabazitaxel Prodrug Nanoassemblies for Cancer Chemotherapy. Pharmaceutics 2023; 15:262. [PMID: 36678891 PMCID: PMC9864162 DOI: 10.3390/pharmaceutics15010262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Cabazitaxel (CTX) has distinct therapeutic merits for advanced and metastatic cancer. However, the present clinical formulation (Jevtana®) has several defects, especially for undesirable tumor-targeting and serious side effects, greatly limiting the therapeutic efficacy. Small-molecule prodrug-based nanoassemblies integrate the advantages of both prodrug strategy and nanotechnology, emerging as a promising treatment modality. Herein, disulfide bonds with different lengths were employed as linkages to elaborately synthesize three redox-sensitive stearyl alcohol (SAT)-CTX prodrug-based nanoassemblies (SAC NPs, SBC NPs and SGC NPs) for seeking optimal chemotherapeutical treatment. All the prodrug-based nanoassemblies exhibited impressive drug-loading efficiency, superior self-assembly capability and excellent colloidal stability. Interestingly, the drug release behaviors of three prodrug-nanoassemblies in the same reductive environment were different owing to tiny changes in the carbon chain length of disulfide bonds, resulting in disparate cytotoxicity effects, pharmacokinetic outcomes and in vivo antitumor efficacies. Among them, SAC NPs displayed rapid drug release, excellent cytotoxicity, long blood circulation and enhanced tumor accumulation, thus showing strong tumor inhibition in the 4T1-bearing mouse model. Our study shed light on the vital role of connecting bonds in designing high-efficiency, low-toxicity prodrug nanoassemblies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
17
|
Zhang H, Kong Z, Wang Z, Chen Y, Zhang S, Luo C. Molecularly engineering a dual-drug nanoassembly for self-sensitized photodynamic therapy via thioredoxin impairment and glutathione depletion. Drug Deliv 2022; 29:3281-3290. [PMID: 36350255 PMCID: PMC9662020 DOI: 10.1080/10717544.2022.2141920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Photodynamic therapy (PDT) has been extensively investigated as a spatiotemporally noninvasive and controllable modality for cancer treatment. However, the intracellular antioxidant systems mainly consisting of thioredoxin (Trx) and glutathione (GSH) significantly counteract and prevent reactive oxygen species (ROS) accumulation, resulting in a serious loss of PDT efficiency. To address this challenge, we propose that PDT can be improved by precisely blocking antioxidant systems. After molecular engineering and synergistic cytotoxic optimization, a DSPE-PEG2K-modified dual-drug nanoassembly (PPa@GA/DSPE-PEG2K NPs) of pyropheophorbide a (PPa) and gambogic acid (GA) is successfully constructed. Interestingly, GA can effectively destroy intracellular antioxidant systems by simultaneously inhibiting Trx and GSH. Under laser irradiation, the cell-killing effects of PPa is significantly enhanced by GA-induced inhibition of the antioxidant systems. As expected, PPa@GA/DSPE-PEG2K nanoparticles demonstrate potent antitumor activity in a 4T1 breast tumor-bearing BALB/c mouse xenograft model. Such a carrier-free self-sensitized nanotherapeutic offers a novel co-delivery strategy for effective PDT.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Zhiqiang Kong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yao Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
18
|
Ju J, Wu Y, He W, Zhan L, Yin X, Zhang J, Zhang Y, Qiu L, Muhammad P, Reis RL, Li C. Nanocarriers for Active Ingredients of Chinese Medicine (AIFCM) Used in Gastrointestinal Cancer Therapy. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Active ingredients of Chinese medicine (AIFCM) are pharmacological substances taken from traditional Chinese medicine that show promise in treating gastrointestinal cancer. Compared with traditional chemotherapeutic drugs, AIFCM have advantages such as multi-target and multi-level treatment
of gastrointestinal cancer. Nanocarriers have the following advantages, better bioavailability, passive or active targeting of tumor sites and responsive release of drugs. The use of nanocarriers for delivery of AIFCM in treatment of gastrointestinal cancer, can overcome the disadvantages
of some AIFCM, such as insolubility and low bioavailability. In this review, we first outline the background on gastrointestinal cancer, main curative factors and conventional therapeutic approaches. Then, the mechanisms for AIFCM in gastrointestinal cancer therapy are presented in the following
four aspects: gene regulation, immune modulation, cellular pathway transduction, and alteration of intestinal flora. Thirdly, preparation of various nanocarriers and results when combining AIFCM in gastrointestinal cancer are presented. Fourth, application of novel targeted nanocarriers and
responsive nanocarriers in gastrointestinal tumors is further introduced. Finally, the application of AIFCM in the treatment of gastrointestinal cancer is summarized and prospected, hoping to shed some light on the nanocarrier-bound AIFCM in the treatment of gastrointestinal cancer.
Collapse
Affiliation(s)
- Jiale Ju
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yinghua Wu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wen He
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Lin Zhan
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xuelian Yin
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junfeng Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuxi Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Li Qiu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Pir Muhammad
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue, Engineering and Regenerative Medicine, Guimarães,
4805-017, Portugal
| | - Chenchen Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
19
|
Sun J, Li J, Li X, Yang L, Liu Y, Gao H, Xiang L. Sequentially responsive size reduction and drug release of core-satellite nanoparticles to enhance tumor penetration and effective tumor suppression. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Chang D, Li Y, Chen Y, Wang X, Zang D, Liu T. Polyoxometalate-based nanocomposites for antitumor and antibacterial applications. NANOSCALE ADVANCES 2022; 4:3689-3706. [PMID: 36133327 PMCID: PMC9470027 DOI: 10.1039/d2na00391k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 06/07/2023]
Abstract
Polyoxometalates (POMs), as emerging inorganic metal oxides, have been shown to have significant biological activity and great medicinal value. Nowadays, biologically active POM-based organic-inorganic hybrid materials have become the next generation of antibacterial and anticancer drugs because of their customizable molecular structures related to their highly enhanced antitumor activity and reduced toxicity to healthy cells. In this review, the current developed strategies with POM-based materials for the purpose of antibacterial and anticancer activities from different action principles inducing cell death and hyperpolarization, cell plasma membrane destruction, interference with bacterial respiratory chain and inhibiting bacterial growth are overviewed. Moreover, specific interactions between POM-based materials and biomolecules are highlighted for a better understanding of their antibacterial and anticancer mechanisms. POMs have great promise as next-generation antibacterial and anticancer drugs, and this review will provide a valuable systematic reference for the further development of POM-based nanomaterials.
Collapse
Affiliation(s)
- Dening Chang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yanda Li
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yuxuan Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Dejin Zang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Teng Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| |
Collapse
|
22
|
|
23
|
Zhang S, Sun X, Wang Z, Sun J, He Z, Sun B, Luo C. Molecularly Self-Engineered Nanoamplifier for Boosting Photodynamic Therapy via Cascade Oxygen Elevation and Lipid ROS Accumulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38497-38505. [PMID: 35977115 DOI: 10.1021/acsami.2c09209] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photodynamic therapy (PDT) has been extensively explored as a noninvasive cancer treatment modality. However, the dilemma of tumor hypoxia and short half-life of singlet oxygen (1O2) severely restrict the therapeutic efficacy of PDT. Herein, we develop a facile three-in-one PDT nanoamplifier (AA@PPa/Hemin NPs) assembled by pyropheophorbide a (PPa), hemin, and arachidonic acid (AA). Interestingly, AA not only acts as an enabler to facilitate the assembly of PPa and hemin in the construction of ternary hybrid nanoassemblies but also acts as a lipid reactive oxygen species (ROS) amplifier for robust PDT. In tumor cells, hemin plays the role of a catalase-like catalyst that accelerates the production of oxygen (O2) from hydrogen peroxide (H2O2), significantly alleviating tumor hypoxia. Under laser irradiation, vast amounts of 1O2 generated by PPa trigger the peroxidation of AA to produce large amounts of cytotoxic lipid ROS, immensely amplifying the efficiency of PDT by promptly eliciting cellular oxidative stress. As expected, AA@PPa/Hemin NPs exert potent antitumor activity in a 4T1 breast-tumor-bearing BALB/c mice xenograft model. Such a cascade nanohybrid amplifier provides a novel codelivery platform for accurate and effective PDT of cancer.
Collapse
Affiliation(s)
- Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinxin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
24
|
Xu Y, Zhang Z, Zhang Y, Yang D, Liang Y, Xu Y. Lipid Membrane-Wrapped Zeolitic Imidazolate Framework-8 for Synergistic Chemotherapy and Photothermal Therapy to Target Prostate Cancer. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endocrine therapy is often used for advanced prostate cancer. However, with cancer progress, prostate cancer gradually resistant to hormone which lead to serious threatens to life of patients. Herein, a multifunctional synergistic core–shell nanoplatform is reported for improving
the therapeutic effect of chemotherapy for advanced or metastatic prostate cancer, and reducing the risk of leakage of chemotherapy drugs. Particularly, Zeolitic imidazolate framework-8 (ZIF-8) is chosen as inner core to load doxorubicin, and the of liposomes which are embedded with IR780
iodide are used as outer shell, and further modified with target ligand that binds to luteinizing hormone releasing hormone receptor. The prepared nanocarrier exhibit satisfactory photothermal effect under near infrared laser irradiation, and the temperature increases to 60.8 °C within
6 min. Meanwhile, the elevated temperature accelerates the degradation of lipid shell, releasing ZIF-8 core to acidic microenvironment of tumor, and resulting in the release of doxorubicin. Moreover, in vivo and in vitro studies have shown the ZIF-D@ALIP core–shell nanoparticles
can achieve targeted drug delivery, pH and NIR dual stimuli-responsive drug release, as well as chemotherapy and photothermal therapy synergistically on the tumor site. In addition, the problem of premature leakage and changes in the physicochemical properties of anticancer drugs are avoided
under the protection of the outer shell structure. Therefore, the core–shell nanostructure proposes a new lipid membrane coating strategy to promote the effective targeting of prostate cancer cells or tissues and provides some insights in clinical treatment for advanced prostate cancer.
Collapse
Affiliation(s)
- Yingtian Xu
- School of Material Sciences and Engineering, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
| | - Zhaokun Zhang
- National Engineering Research Center for Nanotechnology, 28 East Jiangchuan Road, Shanghai, 200241, P. R. China
| | - Ying Zhang
- National Engineering Research Center for Nanotechnology, 28 East Jiangchuan Road, Shanghai, 200241, P. R. China
| | - Dicheng Yang
- National Engineering Research Center for Nanotechnology, 28 East Jiangchuan Road, Shanghai, 200241, P. R. China
| | - Yuan Liang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001, P. R. China
| | - Yan Xu
- School of Material Sciences and Engineering, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
| |
Collapse
|
25
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
26
|
Cheng X, Pei X, Xie W, Chen J, Li Y, Wang J, Gao H, Wan Q. pH‐Triggered Size‐Tunable Silver Nanoparticles: Targeted Aggregation for Effective Bacterial Infection Therapy. SMALL 2022; 18:e2200915. [PMID: 35499191 DOI: 10.1002/smll.202200915] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Xinting Cheng
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Prosthodontics West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Prosthodontics West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Wenjia Xie
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Prosthodontics West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Prosthodontics West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Yuanyuan Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Prosthodontics West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Jian Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Prosthodontics West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Huile Gao
- West China School of Pharmacy Sichuan University Chengdu 610044 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Prosthodontics West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| |
Collapse
|
27
|
Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Sun T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Qian X, Xu X, Wu Y, Wang J, Li J, Chen S, Wen J, Li Y, Zhang Z. Strategies of engineering nanomedicines for tumor retention. J Control Release 2022; 346:193-211. [PMID: 35447297 DOI: 10.1016/j.jconrel.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/29/2023]
Abstract
The retention of therapeutic agents in solid tumors at sufficient concentration and duration is crucial for their antitumor effects. Given the important contribution of nanomedicines to oncology, we herein summarized two major strategies of nanomedicines for tumor retention, such as transformation- and interactions-mediated strategies. The transformation-mediated retention strategy was achieved by enlarging particle size of nanomedicines or modulating the morphology into fibrous structures, while the interactions-mediated retention strategy was accomplished by modulating nanomedicines to promote their interactions with versatile cells or components in tumors. Moreover, we provide some considerations and perspectives of tumor-retaining nanomedicines for effective cancer therapy.
Collapse
Affiliation(s)
- Xindi Qian
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuo Chen
- School of Pharmacy, the University of Auckland, Auckland 1142, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, the University of Auckland, Auckland 1142, New Zealand
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China.; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China.; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Liu SH, Wang QZ, Liu T, Bai R, Ma MM, Liu QL, Zhou HG, Liu J, Wang M. Enhanced Glioblastoma Selectivity of Harmine via the Albumin Carrier. J Biomed Nanotechnol 2022; 18:1052-1063. [PMID: 35854453 DOI: 10.1166/jbn.2022.3321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glioblastoma, the most common tumor in the brain, has witnessed very little clinical progress over the last decades. Exploring and discovering new therapeutic strategies for glioblastoma has become a critical problem. Harmine (HM), belonging to the beta-carboline alkaloid, is a natural product and isolated from the seeds of Peganum harmala L., which own notable antitumor activity in vitro. However, the poor water solubility and less selectivity of HM severely limit its clinical use. For enhancing its selective ability to tumor cells, we fabricated a kind of protein nanoparticles (BSA-HM NPs), composed of the modified bovine serum albumin (BSA) and HM. It was substantiated through in vitro and in vivo experiment that BSA-HM NPs could predominantly accumulate in tumor tissues and exhibited remarkably enhanced antitumor efficacy. This study provides a promising strategy to improve the bioavailability and avoid side effects of HM as antitumor agents by choosing BSA as carriers.
Collapse
Affiliation(s)
- Shi-Hui Liu
- Department of Pharmaceutics, College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, P. R. China
| | - Qing-Zhen Wang
- Department of Pharmaceutics, College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, P. R. China
| | - Tao Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Ru Bai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Man-Man Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Qiao-Lin Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Hui-Ge Zhou
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jing Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Mei Wang
- Department of Pharmaceutics, College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, P. R. China
| |
Collapse
|
30
|
|
31
|
Song Y, Jing H, Vong LB, Wang J, Li N. Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Zhou Y, Liu R, Shevtsov M, Gao H. When imaging meets size-transformable nanosystems. Adv Drug Deliv Rev 2022; 183:114176. [PMID: 35227872 DOI: 10.1016/j.addr.2022.114176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Imaging techniques, including magnetic, optical, acoustic and nuclear imaging, are gaining popularity as a research tool and clinical diagnostics. The advent of imaging agents-incorporated nanosystems (NSs), with sufficient contrast and high resolution, facilitates better monitoring of disease progression, targeted delivery and therapeutic process. Of note, the size of NSs remarkably affects imaging performance, while both large and small NSs enjoy respective features and superiority for imaging aspect, including penetration depth, signal-to-background ratio and spatiotemporal resolution. In this review, after a systematic summary of the basic knowledge of imaging techniques and its relation with size-tunable strategies, we further provide insights into the opportunities and challenges facing size-transformable NSs of the future for bio-imaging application and clinical translation.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
33
|
Du J, Zong L, Li M, Yu K, Qiao Y, Yuan Q, Pu X. Two-Pronged Anti-Tumor Therapy by a New Polymer-Paclitaxel Conjugate Micelle with an Anti-Multidrug Resistance Effect. Int J Nanomedicine 2022; 17:1323-1341. [PMID: 35345783 PMCID: PMC8957348 DOI: 10.2147/ijn.s348598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cancerous tumors are still a major disease that threatens human life, with tumor multidrug resistance (MDR) being one of the main reasons for the failure of chemotherapy. Thus, reversing tumor MDR has become a research focus of medical scientists. Methods Here, a reduction-sensitive polymer prodrug micelle, mPEG-DCA-SS-PTX (PDSP), was manufactured with a new polymer inhibitor of drug resistance as a carrier to overcome MDR and improve the anti-tumor effect of PTX. Results The PDSP micelles display good stability, double-responsive drug release, and excellent biocompatibility. The PDSP micelles reduced the cytotoxicity of PTX to normal HL-7702 cells and enhanced that to SMMC-7721 and MCF-7 cells in vitro. Improved sensitivity of A549/ADR to PDSP was also observed in vitro. Furthermore, in vivo experiments show reduced systemic toxicity and enhanced therapeutic efficacy of PTX to H22 subcutaneous tumor-bearing mice. Conclusion This work proves that the reduction-sensitive polymer prodrug micelles carried by the new polymer inhibitor can be used as an alternative delivery system to target tumors and reverse MDR for paclitaxel and other tumor-resistant drugs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Lanlan Zong
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Mengmeng Li
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Keke Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yonghui Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Qi Yuan
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
34
|
Luan S, Xie R, Yang Y, Xiao X, Zhou J, Li X, Fang P, Zeng X, Yu X, Chen M, Gao H, Yuan Y. Acid-Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. SMALL 2022; 18:e2200115. [PMID: 35261151 DOI: 10.1002/smll.202200115] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 02/05/2023]
Abstract
Radiotherapy and chemotherapy are limited by insufficient therapeutic efficacy of low-dose radiation and nonspecific drug biodistribution. Herein, an acid-responsive aggregated nanosystem (AuNPs-D-P-DA) loaded with doxorubicin (DOX) is designed for radiosensitization and synergistic chemoradiotherapy. In response to the acid microenvironment of esophageal cancer (EC), small-sized AuNPs-D-P-DA forms large-sized gold nanoparticle (AuNPs) aggregates in tumor tissues to hinder the backflow of AuNPs to the circulation, resulting in enhanced tumor accumulation and retention. Simultaneously, the AuNPs-based radiosensitization is significantly improved because of the high concentration and large size of intratumoral AuNPs, while DOX are delivered and released specifically into tumor cells triggered by the acid microenvironment for chemo-radio synergistic therapy. Acid-responsive AuNPs exacerbate radiation-induced DNA damage, cell apoptosis, cell cycle arrest, and low colony formation ability in vitro and enhance anti-tumor efficacy in vivo compared to un-responsive control. When combined with acid-responsive DOX, the therapeutic efficacy of the formulation is further improved by their synergistic effect. After the treatment of acid-responsive AuNPs plus radiotherapy, fatty acid metabolism is reprogrammed in xenograft models, which provides potential targets for further improvement of radiosensitization. In summary, the acid-responsive AuNPs-D-P-DA nanosystem leverages the radio- and chemotherapeutic synergies of AuNPs-sensitized X-ray irradiation and acid-responsive DOX in the treatment of EC.
Collapse
Affiliation(s)
- Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xin Xiao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Pinhao Fang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiangrong Yu
- Department of Radiology, Zhuhai People's Hospital, Jinan University, Zhuhai, 519000, P. R. China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
35
|
Elaborately Engineering of a Dual-Drug Co-Assembled Nanomedicine for Boosting Immunogenic Cell Death and Enhancing Triple Negative Breast Cancer Treatment. Asian J Pharm Sci 2022; 17:412-424. [PMID: 35782326 PMCID: PMC9237584 DOI: 10.1016/j.ajps.2022.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Pure drug-assembled nanosystem provides a facile and promising solution for simple manufacturing of nanodrugs, whereas a lack of understanding of the underlying assembly mechanism and the inefficient and uncontrollable drug release still limits the development and application of this technology. Here, a simple and practical nanoassembly of DOX and DiR is constructed on basis of their co-assembly characteristics. Multiple interaction forces are found to drive the co-assembly process. Moreover, DOX release from the nanoassembly can be well controlled by the acidic tumor microenvironment and laser irradiation, resulting in favorable delivery efficiency of DiR and DOX in vitro and in vivo. As expected, the nanoassembly with high therapeutic safety completely eradicated the mice triple negative breast cancer cells (4T1) on BALB/c mice, owing to synergistic chemo-photothermal therapy. More interestingly, DiR and DOX synergistically induce immunogenic cell death (ICD) of tumor cells after treatment, enabling the mice to acquire immune memory against tumor growth and recurrence. Such a facile nanoassembly technique provides a novel multimodal cancer treatment platform of chemotherapy/phototherapy/immunotherapy.
Collapse
|
36
|
Shi M, Zhang J, Wang Y, Peng C, Hu H, Qiao M, Zhao X, Chen D. Tumor-specific nitric oxide generator to amplify peroxynitrite based on highly penetrable nanoparticles for metastasis inhibition and enhanced cancer therapy. Biomaterials 2022; 283:121448. [PMID: 35245730 DOI: 10.1016/j.biomaterials.2022.121448] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022]
Abstract
Multiple biological barriers and tumor metastasis severely impede the tumor therapy. To address these adversities, an acid-activated poly (ethylene glycol)-poly-l-lysine-2,3-dimethylmaleic anhydride/poly (ε-caprolactone)-poly(l-arginine)/β-lapachone nanoparticles (mPEG-PLL-DMA/PCL-P(L-arg)/β-Lap, PLM/PPA/β-Lap NPs) were constructed with charge-reversal and size-reduction for β-Lap delivery with a cascade reaction of reactive oxygen species (ROS) and nitric oxide (NO) production. The nanosystem exhibited highly penetrable, superior cellular uptake and desirable endo-lysosomal escape thanks to size-reduction, charge-reversal and proton sponge, respectively. The vast bulk of ROS, which rapidly generated from β-Lap under high concentration quinone oxidoreductase 1 (NQO1), catalyzed guanidine groups to produce NO and generated highly toxic peroxynitrite (ONOO-). ONOO- would activate pro-matrix metalloproteinases (pro-MMPs) to generate MMPs, degrade the dense extracellular matrix (ECM) to augment the penetration capability, and aggravate DNA damage. NO and ONOO- influenced mitochondrial function by decreasing mitochondrial membrane potential and prevented the production of adenosine triphosphate (ATP), which inhibited the ATP-dependent tumor-derived microvesicles (TMVs) and restrained tumor metastasis. NO was defined as an epithelial mesenchymal transition (EMT) inhibitor to restrain tumor metastasis. All consequences demonstrated that PLM/PPA/β-lap NPs exhibited efficient penetration capability, outstanding anti-metastasis activity and favorable antitumor efficacy. Those novel acid-activated NPs are intended to provide further inspiration for multifunctional NO gas therapy.
Collapse
Affiliation(s)
- Menghao Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jiulong Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Chang Peng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Mingxi Qiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xiuli Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
37
|
Hu Y, Gao S, Khan AR, Yang X, Ji J, Xi Y, Zhai G. Tumor microenvironment-responsive size-switchable drug delivery nanosystems. Expert Opin Drug Deliv 2022; 19:221-234. [PMID: 35164610 DOI: 10.1080/17425247.2022.2042512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Compared with ordinary chemotherapeutic drugs, the variable-size nanoparticles (NPs) have better therapeutic effects and fewer side effects. AREAS COVERED This review mainly summarizes the strategies used to construct smart, size-tunable nanocarriers based on characteristic factors of tumor microenvironment (TME) to dramatically increase the penetration and retention of drugs within tumors. EXPERT OPINION Nanosystems with changeable sizes based on the TME have been extensively studied in the past decade, and their permeability and retention have been greatly improved, making them a very promising treatment for tumors.
Collapse
Affiliation(s)
- Yue Hu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Shan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Government of Punjab, Specialized HealthCare and Medical Education Department, Lahore, Pakistan
| | - Xiaoye Yang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Yanwei Xi
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| |
Collapse
|
38
|
Yan J, Zhang Y, Zheng L, Wu Y, Wang T, Jiang T, Liu X, Peng D, Liu Y, Liu Z. Let‐7i miRNA and platinum loaded nano‐graphene oxide platform for detection/reversion of drug resistance and synergetic chemical‐photothermal inhibition of cancer cell. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Mei H, Cai S, Huang D, Gao H, Cao J, He B. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification. Bioact Mater 2022; 8:220-240. [PMID: 34541398 PMCID: PMC8424425 DOI: 10.1016/j.bioactmat.2021.06.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
The considerable development of carrier-free nanodrugs has been achieved due to their high drug-loading capability, simple preparation method, and offering "all-in-one" functional platform features. However, the native defects of carrier-free nanodrugs limit their delivery and release behavior throughout the in vivo journey, which significantly compromise the therapeutic efficacy and hinder their further development in cancer treatment. In this review, we summarized and discussed the recent strategies to enhance drug delivery and release of carrier-free nanodrugs for improved cancer therapy, including optimizing the intrinsic physicochemical properties and external modification. Finally, the corresponding challenges that carrier-free nanodrugs faced are discussed and the future perspectives for its application are presented. We hope this review will provide constructive information for the rational design of more effective carrier-free nanodrugs to advance therapeutic treatment.
Collapse
Affiliation(s)
- Heng Mei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shengsheng Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Dennis Huang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78731, USA
| | - Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
40
|
Xiao Q, Li X, Liu C, Yang Y, Hou Y, Wang Y, Su M, He W. Liposome-based anchoring and core-encapsulation for combinatorial cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Wei W, Zhang Y, Li R, Cao Y, Yan X, Ma Y, Zhang Y, Yang M, Zhang M. Oral Delivery of Pterostilbene by L-Arginine-Mediated “Nano-Bomb” Carrier for the Treatment of Ulcerative Colitis. Int J Nanomedicine 2022; 17:603-616. [PMID: 35177902 PMCID: PMC8843770 DOI: 10.2147/ijn.s347506] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Wei Wei
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Xi’an No.1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, First Affiliated Hospital of Northwestern University, Xi’an, Shaanxi, People’s Republic of China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Runqing Li
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yameng Cao
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiangji Yan
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yana Ma
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Mei Yang
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Correspondence: Mei Yang; Mingzhen Zhang, Email ;
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
42
|
Thapa Magar K, Boafo GF, Li X, Chen Z, He W. Liposome-based delivery of biological drugs. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Chen Q, Xu S, Liu S, Wang Y, Liu G. Emerging nanomedicines of paclitaxel for cancer treatment. J Control Release 2022; 342:280-294. [PMID: 35016919 DOI: 10.1016/j.jconrel.2022.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
Malignant tumor is still a leading threat to human health. Despite the rapid development of targeted therapeutic strategies, any treatment specifically acting on single target would inevitably suffer from tumor resistance, largely due to the genetic instability and variability of tumor cells. Thus, traditional therapies such as broad-spectrum chemotherapy would certainly occupy an important position in clinical cancer therapy. Nevertheless, most chemotherapeutic drugs have long been criticized for unsatisfactory therapeutic efficacy with severe off-target toxicity. Although several chemotherapeutic nanomedicines with improved therapeutic safety have been applied in clinics, the therapeutic outcomes still do not fulfill expectation. To address this challenge, enormous efforts have been devoted to developing novel nano-formulations for efficient delivery of chemotherapeutic drugs. Herein, we aim to outline the latest progression in the emerging nanomedicines of paclitaxel (PTX), with special attention to the functional nanocarriers, self-delivering prodrug-nanoassemblies and combination nanotherapeutics of PTX. Finally, the challenges and opportunities of these functional PTX nanomedicines in clinical translation are spotlighted.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China.
| | - Shu Xu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Shuo Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Yue Wang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Guangxuan Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| |
Collapse
|
44
|
Wu Y, Li J, Zhong X, Shi J, Cheng Y, He C, Li J, Zou L, Fu C, Chen M, Zhang J, Gao H. A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy. Asian J Pharm Sci 2022; 17:206-218. [PMID: 35582637 PMCID: PMC9091603 DOI: 10.1016/j.ajps.2021.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
The combination of Ce6, an acknowledged photosensitizer, and TPL, a natural anticancer agent, has been demonstrated as a useful strategy to reinforce the tumor growth suppression, as well as decrease the systemic side effects compared with their monotherapy. However, in view of the optimal chemo-photodynamic combination efficiency, there is still short of the feasible nanovehicle to steadily co-deliver Ce6 and TPL, and stimuli-responsively burst release drugs in tumor site. Herein, we described the synergistic antitumor performance of a pH-sensitive supramolecular nanosystem, mediated by the host–guest complexing between β-CD and acid pH-responsive amphiphilic co-polymer mPEG-PBAE-mPEG, showing the shell–core structural micelles with the tight β-CD layer coating. Both Ce6 and TPL were facilely co-loaded into the spherical supramolecular NPs (TPL+Ce6/NPs) by one-step nanoprecipitation method, with an ideal particle size (156.0 nm), acid pH-responsive drug release profile, and enhanced cellular internalization capacity. In view of the combination benefit of photodynamic therapy and chemotherapy, as well as co-encapsulation in the fabricated pH-sensitive supramolecular NPs, TPL+Ce6/NPs exhibited significant efficacy to suppress cellular proliferation, boost ROS level, lower MMP, and promote cellular apoptosis in vitro. Particularly, fluorescence imaging revealed that TPL+Ce6/NPs preferentially accumulated in the tumor tissue area, with higher intensity than that of free Ce6. As expected, upon 650-nm laser irradiation, TPL+Ce6/NPs exhibited a cascade of amplified synergistic chemo-photodynamic therapeutic benefits to suppress tumor progression in both hepatoma H22 tumor-bearing mice and B16 tumor-bearing mice. More importantly, lower systemic toxicity was found in the tumor-bearing mice treated with TPL+Ce6/NPs. Overall, the designed supramolecular TPL+Ce6/NPs provided a promising alternative approach for chemo-photodynamic therapy in tumor treatment.
Collapse
Affiliation(s)
- Yihan Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingjing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Xuemei Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinfeng Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfen Cheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenglin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiaxin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Corresponding author.
| | - Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Corresponding author.
| |
Collapse
|
45
|
Peng S, Xiao F, Chen M, Gao H. Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103836. [PMID: 34796689 PMCID: PMC8728817 DOI: 10.1002/advs.202103836] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Indexed: 05/07/2023]
Abstract
The past decades have witnessed great progress in cancer immunotherapy, which has profoundly revolutionized oncology, whereas low patient response rates and potential immune-related adverse events remain major clinical challenges. With the advantages of controlled delivery and modular flexibility, cancer nanomedicine has offered opportunities to strengthen antitumor immune responses and to sensitize tumor to immunotherapy. Furthermore, tumor-microenvironment (TME)-responsive nanomedicine has been demonstrated to achieve specific and localized amplification of the immune response in tumor tissue in a safe and effective manner, increasing patient response rates to immunotherapy and reducing the immune-related side effects simultaneously. Here, the recent progress of TME-responsive nanomedicine for cancer immunotherapy is summarized, which responds to the signals in the TME, such as weak acidity, reductive environment, high-level reactive oxygen species, hypoxia, overexpressed enzymes, and high-level adenosine triphosphate. Moreover, the potential to combine nanomedicine-based therapy and immunotherapeutic strategies to overcome each step of the cancer-immunity cycle and to enhance antitumor effects is discussed. Finally, existing challenges and further perspectives in this rising field with the hope for improved development of clinical applications are discussed.
Collapse
Affiliation(s)
- Shaojun Peng
- Zhuhai Institute of Translational MedicineZhuhai Precision Medical CenterZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000China
| | - Fengfeng Xiao
- Zhuhai Institute of Translational MedicineZhuhai Precision Medical CenterZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacau999078China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
46
|
Zhang L, Hu S, Zhang L, wu W, Cheng Q, Li J, Narain R. Synergistic Size and Charge Conversions of Functionalized PAMAM Dendrimers under Acidic Tumor Microenvironment. Biomater Sci 2022; 10:4271-4283. [DOI: 10.1039/d2bm00643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Developing nanomedicine with highly adaptive behaviors has presented great effectiveness in cancer treatment. However, the multi-functional integration of nano-therapeutic system inevitably leads to the complexity in structure and impairs the...
Collapse
|
47
|
Chen J, Yang J, Ding J. Rational construction of polycystine-based nanoparticles for biomedical applications. J Mater Chem B 2022; 10:7173-7182. [PMID: 35662309 DOI: 10.1039/d2tb00581f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypeptide-based nanoparticles are one of the promising excipients of nanomedicines due to their excellent biosafety and flexible modification. Among all the types of polypeptide nanoparticles, polycystine (PCys2)-based ones draw increasing...
Collapse
Affiliation(s)
- Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, P. R. China
| | - Jiazhen Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| |
Collapse
|
48
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater Today Bio 2022; 13:100208. [PMID: 35198957 PMCID: PMC8841842 DOI: 10.1016/j.mtbio.2022.100208] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Nanotechnology in medical applications, especially in oncology as drug delivery systems, has recently shown promising results. However, although these advances have been promising in the pre-clinical stages, the clinical translation of this technology is challenging. To create drug delivery systems with increased treatment efficacy for clinical translation, the physicochemical characteristics of nanoparticles such as size, shape, elasticity (flexibility/rigidity), surface chemistry, and surface charge can be specified to optimize efficiency for a given application. Consequently, interdisciplinary researchers have focused on producing biocompatible materials, production technologies, or new formulations for efficient loading, and high stability. The effects of design parameters can be studied in vitro, in vivo, or using computational models, with the goal of understanding how they affect nanoparticle biophysics and their interactions with cells. The present review summarizes the advances and technologies in the production and design of cancer nanomedicines to achieve clinical translation and commercialization. We also highlight existing challenges and opportunities in the field.
Collapse
Key Words
- CFL, Cell-free layer
- CGMD, Coarse-grained molecular dynamic
- Clinical translation
- DPD, Dissipative particle dynamic
- Drug delivery
- Drug loading
- ECM, Extracellular matrix
- EPR, Permeability and retention
- IFP, Interstitial fluid pressure
- MD, Molecular dynamic
- MDR, Multidrug resistance
- MEC, Minimum effective concentration
- MMPs, Matrix metalloproteinases
- MPS, Mononuclear phagocyte system
- MTA, Multi-tadpole assemblies
- MTC, Minimum toxic concentration
- Nanomedicine
- Nanoparticle design
- RBC, Red blood cell
- TAF, Tumor-associated fibroblast
- TAM, Tumor-associated macrophage
- TIMPs, Tissue inhibitor of metalloproteinases
- TME, Tumor microenvironment
- Tumor microenvironment
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | | | | | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Lance L. Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
49
|
Zhang L, Li C, Wan S, Zhang X. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022; 11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Traditional tumor treatments, including chemotherapy, radiotherapy, photodynamic therapy, and photothermal therapy, are developed and used to treat different types of cancer. Recently, chemodynamic therapy (CDT) has been emerged as a novel cancer therapeutic strategy. CDT utilizes Fenton or Fenton-like reaction to generate highly cytotoxic hydroxyl radicals (•OH) from endogenous hydrogen peroxide (H2 O2 ) to kill cancer cells, which displays promising therapeutic potentials for tumor treatment. However, the low catalytic efficiency and off-target side effects of Fenton reaction limit the biomedical application of CDT. In this regard, various strategies are implemented to potentiate CDT against tumor, including retrofitting the tumor microenvironment (e.g., increasing H2 O2 level, decreasing reductive substances, and reducing pH), enhancing the catalytic efficiency of nanocatalysts, and other strategies. This review aims to summarize the development of CDT and summarize these recent progresses of nanocatalyst-mediated CDT for antitumor application. The future development trend and challenges of CDT are also discussed.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710004 P. R. China
| | - Chu‐Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Shuang‐Shuang Wan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
50
|
Ma B, Chen Y, Hu G, Zeng Q, Lv X, Oh DH, Fu X, Jin Y. Ovotransferrin Antibacterial Peptide Coupling Mesoporous Silica Nanoparticle as an Effective Antibiotic Delivery System for Treating Bacterial Infection In Vivo. ACS Biomater Sci Eng 2021; 8:109-118. [PMID: 34936344 DOI: 10.1021/acsbiomaterials.1c01267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibiotic-resistant pathogens are a serious threat to global public health. The emergence of drug-resistant pathogens is due to the improper use of antibiotics, making the treatment of bacterial infections very challenging. Here, we reported an efficient antibiotic delivery nanoparticle to minimize antibiotic resistance. The nanoparticle was designed to target the bacterial membrane using mesoporous silica nanoparticles (MSNs) modified with an ovotransferrin-derived antimicrobial peptide (OVTp12), enabling the antibiotic to be delivered to the vicinity of the pathogenic bacteria. Moreover, we observed that OVTp12-modified nanoparticles effectively inhibited the growth of Escherichia coli in vitro and in vivo. The nanoparticle with high biosafety could significantly downregulate the expression of inflammation-related cytokines in infected tissues. Thus, this novel bacterial targeted nanoparticle provides advantages in minimizing bacterial drug resistance and treating bacterial infection.
Collapse
Affiliation(s)
- Bin Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yue Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Gan Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Deog Hwan Oh
- Department of Bioconvergence Science and Technology, College of Agriculture and Life Science, Kangwon National University, Chunchon 24341, South Korea
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|