1
|
Zhu X, Yang K, Zhang Z, He S, Shen Z, Jiang W, Huang Y, Xu Y, Jiang Q, Pan L, Li Q, Yang J. Additive-Free Anode with High Stability: Nb 2CT x MXene Prepared by HCl-LiF Hydrothermal Etching for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28709-28718. [PMID: 38780517 DOI: 10.1021/acsami.4c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
MXenes, represented by Ti3C2Tx, have been widely studied in the electrochemical energy storage fields, including lithium-ion batteries, for their unique two-dimensional structure, tunable surface chemistry, and excellent electrical conductivity. Recently, Nb2CTx, as a new type of MXene, has attracted more and more attention due to its high theoretical specific capacity of 542 mAh g-1. However, the preparation of few-layer Nb2CTx nanosheets with high-quality remains a challenge, which limits their research and application. In this work, high-quality few-layer Nb2CTx nanosheets with a large lateral size and a high conductivity of up to 500 S cm-1 were prepared by a simple HCl-LiF hydrothermal etching method, which is 2 orders of magnitude higher than that of previously reported Nb2CTx. Furthermore, from its aqueous ink, the viscosity-tunable organic few-layer Nb2CTx ink was prepared by HCl-induced flocculation and N-methyl-2-pyrrolidone treatment. When using the organic few-layer Nb2CTx ink as an additive-free anode of lithium-ion batteries, it showed excellent cycling performance with a reversible specific capacity of 524.0 mAh g-1 after 500 cycles at 0.5 A g-1 and 444.0 mAh g-1 after 5000 cycles at 1 A g-1. For rate performance, a specific capacity of 159.8 mAh g-1 was obtained at a high current density of 5 A g-1, and an excellent capacity retention rate of about 95.65% was achieved when the current density returned to 0.5 A g-1. This work presents a simple and scalable process for the preparation of high-quality Nb2CTx and its aqueous/organic ink, which demonstrates important application potential as electrodes for electrochemical energy storage devices.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Kai Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Zhen Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Siyuan He
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Zihao Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Wei Jiang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Yiling Huang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Yan Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Qiutong Jiang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Limei Pan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Qian Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Jian Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| |
Collapse
|
2
|
Akir S, Azadmanjiri J, Antonatos N, Děkanovský L, Roy PK, Mazánek V, Lontio Fomekong R, Regner J, Sofer Z. Atomic-layered V 2C MXene containing bismuth elements: 2D/0D and 2D/2D nanoarchitectonics for hydrogen evolution and nitrogen reduction reaction. NANOSCALE 2023. [PMID: 37464871 DOI: 10.1039/d3nr01144e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The exploitation of two-dimensional (2D) vanadium carbide (V2CTx, denoted as V2C) in electrocatalytic hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR) is still in the stage of theoretical study with limited experimental exploration. Here, we present the experimental studies of V2C MXene-based materials containing two different bismuth compounds to confirm the possibility of using V2C as a potential electrocatalyst for HER and NRR. In this context, for the first time, we employed two different methods to synthesize 2D/0D and 2D/2D nanostructures. The 2D/2D V2C/BVO consisted of BiVO4 (denoted BVO) nanosheets wrapped in layers of V2C which were synthesized by a facile hydrothermal method, whereas the 2D/0D V2C/Bi consisted of spherical particles of Bi (Bi NPs) anchored on V2C MXenes using the solid-state annealing method. The resultant V2C/BVO catalyst was proven to be beneficial for HER in 0.5 M H2SO4 compared to pristine V2C. We demonstrated that the 2D/2D V2C/BVO structure can favor the higher specific surface area, exposure of more accessible catalytic active sites, and promote electron transfer which can be responsible for optimizing the HER activity. Moreover, V2C/BVO has superior stability in an acidic environment. Whilst we observed that the 2D/0D V2C/Bi could be highly efficient for electrocatalytic NRR purposes. Our results show that the ammonia (NH3) production and faradaic efficiency (FE) of V2C/Bi can reach 88.6 μg h-1 cm-2 and 8% at -0.5 V vs. RHE, respectively. Also V2C/Bi exhibited excellent long-term stability. These achievements present a high performance in terms of the highest generated NH3 compared to recent investigations of MXenes-based electrocatalysts. Such excellent NRR of V2C/Bi activity can be attributed to the effective suppression of HER which is the main competitive reaction of the NRR.
Collapse
Affiliation(s)
- Sana Akir
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Lukáš Děkanovský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Pradip Kumar Roy
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Roussin Lontio Fomekong
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Sha D, Lu C, He W, Ding J, Zhang H, Bao Z, Cao X, Fan J, Dou Y, Pan L, Sun Z. Surface Selenization Strategy for V 2CT x MXene toward Superior Zn-Ion Storage. ACS NANO 2022; 16:2711-2720. [PMID: 35113510 DOI: 10.1021/acsnano.1c09639] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MXenes are promising cathode materials for aqueous zinc-ion batteries (AZIBs) owing to their layered structure, metallic conductivity, and hydrophilicity. However, they suffer from low capacities unless they are subjected to electrochemically induced second phase formation, which is tedious, time-consuming, and uncontrollable. Here we propose a facile one-step surface selenization strategy for realizing advanced MXene-based nanohybrids. Through the selenization process, the surface metal atoms of MXenes are converted to transition metal selenides (TMSes) exhibiting high capacity and excellent structural stability, whereas the inner layers of MXenes are purposely retained. This strategy is applicable to various MXenes, as demonstrated by the successful construction of VSe2@V2CTx, TiSe2@Ti3C2Tx, and NbSe2@Nb2CTx. Typically, VSe2@V2CTx delivers high-rate capability (132.7 mA h g-1 at 2.0 A g-1), long-term cyclability (93.1% capacity retention after 600 cycles at 2.0 A g-1), and high capacitive contribution (85.7% at 2.0 mV s-1). Detailed experimental and simulation results reveal that the superior Zn-ion storage is attributed to the engaging integration of V2CTx and VSe2, which not only significantly improves the Zn-ion diffusion coefficient from 4.3 × 10-15 to 3.7 × 10-13 cm2 s-1 but also provides sufficient structural stability for long-term cycling. This study offers a facile approach for the development of high-performance MXene-based materials for advanced aqueous metal-ion batteries.
Collapse
Affiliation(s)
- Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chengjie Lu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wei He
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jianxiang Ding
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Heng Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Zhuoheng Bao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xin Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jingchen Fan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yan Dou
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
4
|
Ag Nanoparticles decorated few-layer Nb2CT nanosheets architectures with superior lithium/sodium-ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Li N, Wang D, Liang X, Li D, Liu G, Sun G, Xu G, Zhang X, Li Y. Multi‐stage Ordered Mesoporous Carbon‐graphene Aerogel‐Ni
3
S
2
/Co
4
S
3
for Supercapacitor Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202100127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ning Li
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Dan Wang
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Xiu Liang
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Dongwei Li
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Guoran Liu
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Guanliang Sun
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Guanchen Xu
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Xingshuang Zhang
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Yong Li
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| |
Collapse
|
6
|
Yu L, Lu L, Zhou X, Xu L, Alhalili Z, Wang F. Strategies for Fabricating High‐Performance Electrochemical Energy‐Storage Devices by MXenes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - XiaoHong Zhou
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts Shaqra University Sajir Riyadh Saudi Arabia
| | - FengJun Wang
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| |
Collapse
|
7
|
Homogenously dispersed ultrasmall niobium(V) oxide nanoparticles enabling improved ionic conductivity and interfacial compatibility of composite polymer electrolyte. J Colloid Interface Sci 2021; 586:855-865. [PMID: 33248698 DOI: 10.1016/j.jcis.2020.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/23/2022]
Abstract
Composite polymer electrolytes (CPEs) decorated with ceramic fillers have emerged as appealing structures that exhibit coalesced merits of both inorganic and polymer solid electrolytes, but are currently challenged by the particle agglomeration that weakens ionic conductivity and electrochemical performances. Herein, a facile solvothermal method is proposed to fabricate the ultrasmall niobium(V) oxide (Nb2O5) nanoparticle of average size being less than 3 nm, enabling the composite polymer electrolyte with homogenous dispersity (nano-CPE). Owning to the superior dispersity of ultrasmall Nb2O5 nanoparticles, the polymer chains can be effectively disordered to enhance the local segmental motion through the physical interruption. Moreover, strong Lewis acid-based interactions between Nb2O5 nanoparticles and lithium salts are formed, resulting in accelerating the dissociation of lithium salt and releasing more free charge carriers. Therefore, the 3D connected Li+ fast pathways along the amorphous region between the Nb2O5 nanoparticles and polymer chains are constructed, ensuring the improved ionic conductivity. In addition, the homogenous Li deposition can also be simultaneously achieved through the intimate interfacial contact, which can efficiently suppress the growth of lithium dendrite in the metal anode. The fabricated nano-CPE presents a high ionic conductivity of 6.6 × 10-5 S/cm at room temperature and wide anti-oxidative potential of 5.1 V. The lithium symmetric battery using nano-CPE delivers a decent lithium plating/stripping performance for 200 h at 0.5 mA/cm2. The solid-sate LiFePO4 battery achieves long stable cycling performances (151mAh/g and 140 mAh/g after 230 cycles at 0.5C and 1.0C, respectively). This work may offer a facile and efficient synthesized method of highly dispersed ultrasmall nanoparticles for advancing the CPE with improved ionic conductivity, interfacial contact and cell performances.
Collapse
|
8
|
Dong H, Xiao P, Jin N, Wang B, Liu Y, Lin Z. Molten Salt Derived Nb
2
CT
x
MXene Anode for Li‐ion Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hanyu Dong
- Rare Earth and Vanadium Titanium Materials Research Center College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Peng Xiao
- Rare Earth and Vanadium Titanium Materials Research Center College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Na Jin
- Rare Earth and Vanadium Titanium Materials Research Center College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Binbin Wang
- PipeChina Southwest Pipeline Company Chengdu 610037 China
| | - Ying Liu
- Rare Earth and Vanadium Titanium Materials Research Center College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Zifeng Lin
- Rare Earth and Vanadium Titanium Materials Research Center College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
9
|
Zhang Y, Fang L, Sun W, Shi B, Chen X, Gu Y, Ding K, Wang Z, Sun K. A novel synthesis of Nb2O5@rGO nanocomposite as anode material for superior sodium storage. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Huang X, Zhou W, Chen X, Jiang C, Zou Z. High performance Li-ion hybrid capacitors with micro-sized Nb14W3O44 as anode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|