1
|
Asim Ali S, Khanam M, Sadiq I, Shaheen S, Ahmad T. Physicochemical Modulations in MXenes for Carbon Dioxide Mitigation and Hydrogen Generation: Tandem Dialogue between Theoretical Anticipations and Experimental Evidences. J Colloid Interface Sci 2024; 679:1046-1075. [PMID: 39418892 DOI: 10.1016/j.jcis.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The dawn of MXenes has fascinated researchers under their intriguing physicochemical attributes that govern their energy and environmental applications. Modifications in the physicochemical properties of MXenes pave the way for efficient energy-driven operations such as carbon capture and hydrogen generation. The physicochemical modulations such as interface engineering through van der Waals coupling with homo/hetero-junctions render the tunability of optoelectronic variables driving the photochemical and electrochemical processes. Herein, we have reviewed the recent achievements in physicochemical properties of MXenes by highlighting the role of intercalants/terminal groups, atomic defects, surface chemistry and few/mono-layer formation. Recent findings of MXenes-based materials are systematically surveyed in a tandem manner with the future outlook for constructing next-generation multi-functional catalytic systems. Theoretical modelling of MXenes surface engineering proffers the mechanistic comprehension of surface phenomena such as termination, interface formation, doping and functionalization, thereby enabling the researchers to exploit them for targeted applications. Therefore, theoretical anticipations and experimental evidences of electrochemical/photochemical carbon dioxide reduction and hydrogen evolution reactions are synergistically discussed.
Collapse
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Madeeha Khanam
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Iqra Sadiq
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Saman Shaheen
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Jiang S, Yang L, Ma X, Zhang H, Guo S, Ren H, Yin W, He X. Fracture Mechanisms and Crack Propagation in Monolayer Ti 3C 2T x under Nanoindentation: The Influence of Surface Terminations and Vacancy Defects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48113-48125. [PMID: 39215692 DOI: 10.1021/acsami.4c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Monolayer MXenes are a novel class of two-dimensional transition metal carbides/nitrides with fascinating physicochemical properties. Despite recent advances in the study of MXenes' mechanical properties, a comprehensive understanding of the fundamental physical mechanisms that affect fracture due to surface terminations and vacancy defects in MXenes under nanoindentation remains largely unexplored. Here, we address this gap using molecular dynamics simulations and nanoindentation theory to investigate the effects of surface terminations and vacancy defects on the fracture behavior of Ti3C2Tx MXenes. By inducing the rupture of monolayer MXenes through nanoindentation, we find that bare Ti3C2 exhibits brittle fracture behavior. The presence of surface terminations and vacancy defects reduces the load-carrying capacity and flexibility of MXenes. Interestingly, surface terminations increase the stiffness of the structure, while vacancy defects have the opposite effect. We also find that high concentrations of surface oxidation impart ductile fracture characteristics to MXenes and increase the maximum crack length at failure. Additionally, defects exceeding the critical concentration can effectively prevent brittle crack propagation by causing frequent crack deflection and blunting crack tips. Combining these findings, we propose a new strategy to synergistically enhance the fracture toughness of MXenes through high concentrations of surface oxidation and vacancy defects exceeding the critical concentration without significantly affecting strength and stiffness, thereby avoiding catastrophic failure in MXene monolayers due to brittle fracture. This work provides fundamental insights into the mechanical properties and fracture mechanisms of monolayer MXenes.
Collapse
Affiliation(s)
- Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Hongchi Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Hongzhao Ren
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Weilong Yin
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
3
|
Kruger DD, García H, Primo A. Molten Salt Derived MXenes: Synthesis and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307106. [PMID: 39021320 PMCID: PMC11425216 DOI: 10.1002/advs.202307106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/09/2024] [Indexed: 07/20/2024]
Abstract
About one decade after the first report on MXenes, these 2D early transition metal carbides or nitrides have become among the best-performing materials in electrode applications related to electrical energy storage devices and power-to-fuels conversion. MXenes are obtained by a top-down approach starting from the appropriate 3D MAX phase that undergoes etching of the A-site metal. Initial etching procedures are based on the use of concentrated HF or the in situ generation of this highly corrosive and poisonous reagent. Etching of the MAX phase is one of the major hurdles limiting the progress of the field. The present review summarizes an alternative, universal, and easily scalable etching procedure based on treating the MAX precursor with a Lewis acid molten salt. The review starts with presenting the current state of the art of the molten salt etching procedure to obtain or modify MXene, followed by a summary of the applications of these MXene samples. The aim of the review is to show the versatility and advantages of molten salt etching in terms of general applicability, control of the surface terminal groups, and uniform deposition of metal nanoparticles, among other features of the procedure.
Collapse
Affiliation(s)
- Dawid D. Kruger
- Instituto Universitario de Tecnología Química CSIC‐UPVUniversitat Politècnica de ValènciaAv. De los Naranjos s/nValència46022Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química CSIC‐UPVUniversitat Politècnica de ValènciaAv. De los Naranjos s/nValència46022Spain
| | - Ana Primo
- Instituto Universitario de Tecnología Química CSIC‐UPVUniversitat Politècnica de ValènciaAv. De los Naranjos s/nValència46022Spain
| |
Collapse
|
4
|
Chen C, Wang B, Xu J, Fei L, Raza S, Li B, Zeng Q, Shen L, Lin H. Recent Advancement in Emerging MXene-Based Photocatalytic Membrane for Revolutionizing Wastewater Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311427. [PMID: 38733219 DOI: 10.1002/smll.202311427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/23/2024] [Indexed: 05/13/2024]
Abstract
MXene-based photocatalytic membranes provide significant benefits for wastewater treatment by effectively combining membrane separation and photocatalytic degradation processes. MXene represents a pioneering 2D photocatalyst with a variable elemental composition, substantial surface area, abundant surface terminations, and exceptional photoelectric performance, offering significant advantages in producing high-performance photocatalytic membranes. In this review, an in-depth overview of the latest scientific progress in MXene-based photocatalytic membranes is provided. Initially, a brief introduction to the structure and photocatalytic capabilities of MXene is provided, highlighting their pivotal role in promoting the photocatalytic process. Subsequently, in pursuit of the optimal MXene-based photocatalytic membrane, critical factors such as the morphology, hydrophilicity, and stability of MXenes are meticulously taken into account. Various preparation strategies for MXene-based photocatalytic membranes, including blending, vacuum filtration, and dip coating, are also discussed. Furthermore, the application and mechanism of MXene-based photocatalytic membranes in micropollutant removal, oil-water separation, and antibacterial are examined. Lastly, the challenges in the development and practical application of MXene-based photocatalytic membranes, as well as their future research direction are delineated.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Saleem Raza
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
5
|
Nemamcha HE, Vu NN, Tran DS, Boisvert C, Nguyen DD, Nguyen-Tri P. Recent progression in MXene-based catalysts for emerging photocatalytic applications of CO 2 reduction and H 2 production: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172816. [PMID: 38679090 DOI: 10.1016/j.scitotenv.2024.172816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The development of advanced materials for efficient photocatalytic H2 production and CO2 reduction is highly recommended for addressing environmental issues and producing clean energy sources. Specifically, MXenes have emerged as two-dimensional (2D) materials extensively used as high-performance cocatalysts in photocatalyst systems owing to their outstanding features of structure and properties such as high conductivity, large specific surface area, and abundant active sites. Nevertheless, there is a lack of deep and systematic studies concerning the application of these emerging materials for CO2 reduction reaction (CRR) and H2 production (HER). This review first outlines the essential features of MXenes, encompassing the synthesis methods, composition, surface terminations, and electronic properties, which make them highly active as cocatalysts. It then examines the recent progress in MXene-based photocatalysts, emphasizing the synergy achieved by coupling MXenes as co-catalysts with semiconductors, utilizing MXenes as a support for the consistent growth of photocatalysts, leading to finely dispersed nanoparticles, and exploiting MXene as exceptional precursors for creating MXene/metal oxide photocomposite. The roles of engineering surface terminations of MXene cocatalysts, MXene quantum dots (QDs), and distinctive morphologies in MXenes-based photocatalyst systems to enhance photocatalytic activity for both HER and CRR have been explored both experimentally and theoretically using DFT calculations. Challenges and prospects for MXene-based photocatalysts are also addressed. Finally, suggestions for further research and development of effective and economical MXenes/semiconductors strategies are proposed. This comprehensive review article serves as a valuable reference for researchers for applying MXenes in photocatalysis.
Collapse
Affiliation(s)
- Houssam-Eddine Nemamcha
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - D Son Tran
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
| |
Collapse
|
6
|
Sobhani Bazghale F, Gilak MR, Zamani Pedram M, Torabi F, Naikoo GA. 2D nanocomposite materials for HER electrocatalysts - a review. Heliyon 2024; 10:e23450. [PMID: 38192770 PMCID: PMC10772112 DOI: 10.1016/j.heliyon.2023.e23450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Hydrogen energy has the potential to be a cost-effective and strong technology for brighter development. Hydrogen fuel production by water electrolyzers has attracted attention. 2D nanocomposites with distinctive properties have been extensively explored for various applications from hydrogen evolution reactions to improving the efficiency of water electrolyzer, which is the most eco-friendly, and high-performance for hydrogen production. Recently, typical 2D nanocomposites such as Metal-Free 2D, TMDs, Mxene, LDH, organic composites, and Heterostructure have recently been thoroughly researched for use in the HER. We discuss effective ways for increasing the HER efficiency of 2D catalysts in this paper, And the unique advantages and mechanisms for specific applications are highlighted. Several essential regulating strategies for developing 2D nanocomposite-based HER electrocatalysts are included such as interface engineering, defect engineering, heteroatom doping, strain & phase engineering, and hybridizing which improve HER kinetics, the electrical conductivity, accessibility to catalytic active sites, and reaction energy barrier can be optimized. Finally, the future prospects for 2D nanocomposites in HER are discussed, as well as a thorough overview of a variety of methodologies for designing 2D nanocomposites as HER electrocatalysts with excellent catalytic performance. We expect that this review will provide a thorough overview of 2D nanocatalysts for hydrogen production.
Collapse
Affiliation(s)
| | - Mohammad Reza Gilak
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Mona Zamani Pedram
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Farschad Torabi
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Gowhar A. Naikoo
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| |
Collapse
|
7
|
Huang L, Zhang Z. Recent Advances in the DNA-Mediated Multi-Mode Analytical Methods for Biological Samples. BIOSENSORS 2023; 13:693. [PMID: 37504092 PMCID: PMC10377368 DOI: 10.3390/bios13070693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
DNA-mediated nanotechnology has become a research hot spot in recent decades and is widely used in the field of biosensing analysis due to its distinctive properties of precise programmability, easy synthesis and high stability. Multi-mode analytical methods can provide sensitive, accurate and complementary analytical information by merging two or more detection techniques with higher analytical throughput and efficiency. Currently, the development of DNA-mediated multi-mode analytical methods by integrating DNA-mediated nanotechnology with multi-mode analytical methods has been proved to be an effective assay for greatly enhancing the selectivity, sensitivity and accuracy, as well as detection throughput, for complex biological analysis. In this paper, the recent progress in the preparation of typical DNA-mediated multi-mode probes is reviewed from the aspect of deoxyribozyme, aptamer, templated-DNA and G-quadruplex-mediated strategies. Then, the advances in DNA-mediated multi-mode analytical methods for biological samples are summarized in detail. Moreover, the corresponding current applications for biomarker analysis, bioimaging analysis and biological monitoring are introduced. Finally, a proper summary is given and future prospective trends are discussed, hopefully providing useful information to the readers in this research field.
Collapse
Affiliation(s)
- Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Ma Q, Gao J, Moussa B, Young J, Zhao M, Zhang W. Electrosorption, Desorption, and Oxidation of Perfluoroalkyl Carboxylic Acids (PFCAs) via MXene-Based Electrocatalytic Membranes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294711 DOI: 10.1021/acsami.3c03991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MXenes exhibit excellent conductivity, tunable surface chemistry, and high surface area. Particularly, the surface reactivity of MXenes strongly depends on surface exposed atoms or terminated groups. This study examines three types of MXenes with oxygen, fluorine, and chlorine as respective terminal atoms and evaluates their electrosorption, desorption, and oxidative properties. Two perfluorocarboxylic acids (PFCAs), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) are used as model persistent micropollutants for the tests. The experimental results reveal that O-terminated MXene achieves a significantly higher adsorption capacity of 215.9 mg·g-1 and an oxidation rate constant of 3.9 × 10-2 min-1 for PFOA compared to those with F and Cl terminations. Electrochemical oxidation of the two PFCAs (1 ppm) with an applied potential of +6 V in a 0.1 M Na2SO4 solution yields >99% removal in 3 h. Moreover, PFOA degrades about 20% faster than PFBA on O-terminated MXene. The density functional theory (DFT) calculations reveal that the O-terminated MXene surface yielded the highest PFOA and PFBA adsorption energy and the most favorable degradation pathway, suggesting the high potential of MXenes as highly reactive and adsorptive electrocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Qingquan Ma
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jianan Gao
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Botamina Moussa
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joshua Young
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mengqiang Zhao
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
9
|
Soomro RA, Zhang P, Fan B, Wei Y, Xu B. Progression in the Oxidation Stability of MXenes. NANO-MICRO LETTERS 2023; 15:108. [PMID: 37071337 PMCID: PMC10113412 DOI: 10.1007/s40820-023-01069-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
MXenes are under the spotlight due to their versatile physicochemical characteristics. Since their discovery in 2011, significant advancements have been achieved in their synthesis and application sectors. However, the spontaneous oxidation of MXenes, which is critical to its processing and product lifespan, has gotten less attention due to its chemical complexity and poorly understood oxidation mechanism. This perspective focuses on the oxidation stability of MXenes and addresses the most recent advancements in understanding and the possible countermeasures to limit the spontaneous oxidation of MXenes. A section is dedicated to the presently accessible methods for monitoring oxidation, with a discussion on the debatable oxidation mechanism and coherently operating factors that contribute to the complexity of MXenes oxidation. The current potential solutions for mitigating MXenes oxidation and the existing challenges are also discussed with prospects to prolong MXene's shelf-life storage and expand their application scope.
Collapse
Affiliation(s)
- Razium A Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Baomin Fan
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Yi Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
10
|
High-Capacity Ion Batteries Based on Ti2C MXene and Borophene First Principles Calculations. INORGANICS 2023. [DOI: 10.3390/inorganics11030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
In this paper, we report an ab initio study of a composite material based on Ti2C and borophene B12 as an anode material for magnesium-ion batteries. The adsorption energy of Mg, specific capacitance, electrical conductivity, diffusion barriers, and open-circuit voltage for composite materials are calculated as functions of Mg concentration. It is found that the use of Ti2C as a substrate for borophene B12 is energetically favorable; the binding energy of Ti2C with borophene is −1.87 eV/atom. The translation vectors of Ti2C and borophene B12 differ by no more than 4% for in the X direction, and no more than 0.5% in the Y direction. The adsorption energy of Mg significantly exceeds the cohesive energy for bulk Mg. The energy barrier for the diffusion of Mg on the surface of borophene B12 is ~262 meV. When the composite surface is completely covered with Mg ions, the specific capacity is 662.6 mAh g−1 at an average open-circuit voltage of 0.55 V (relative to Mg/Mg+). The effect of reducing the resistance of borophene B12 upon its binding to Ti2C is established. The resulting electrical conductivity of the composite Ti16C8B40 is 3.7 × 105 S/m, which is three times higher than the electrical conductivity of graphite. Thus, a composite material based on Ti2C and borophene B12 is a promising anode material for magnesium-ion batteries.
Collapse
|
11
|
Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS NANO 2022; 16:13370-13429. [PMID: 36094932 DOI: 10.1021/acsnano.2c04750] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.
Collapse
Affiliation(s)
- G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeevan Kumar Reddy Modigunta
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jishu Rawal
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
12
|
Le T, Jamshidi E, Beidaghi M, Esfahani MR. Functionalized-MXene Thin-Film Nanocomposite Hollow Fiber Membranes for Enhanced PFAS Removal from Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25397-25408. [PMID: 35608926 DOI: 10.1021/acsami.2c03796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to adverse health effects and the broad sources of per- and polyfluoroakyl substances (PFAS), PFAS removal is a critical research area in water purification. We demonstrate the functionalization of thin-film composite (TFC) hollow fiber nanofiltration (HFN) membranes by MXene nanosheets during the interfacial polymerization (IP) process for enhanced removal of perfluorooctane sulfonic acid (PFOS) from water. A MXene-polyamide (PA) selective layer was fabricated on top of a polysulfone (PSF) hollow fiber support via IP of trimesoyl chloride (TMC) and a mixture of piperazine (PIP) and MXene nanosheets to form MXene-PA thin-film nanocomposite (TFN) membranes. Incorporating MXene nanosheets during the IP process tuned the morphology and negative surface charge of the selective layer, resulting in enhanced PFOS rejection from 72% (bare TFC) to more than 96% (0.025 wt % MXene TFN), while the water permeability was also increased from 13.19 (bare TFC) to 29.26 LMH/bar (0.025 wt % MXene TFN). Our results demonstrate that both electrostatic interaction and size exclusion are the main factors governing the PFOS rejection, and both are determined by PA selective layer structural and chemical properties. The lamella structure and interlayer of MXene nanosheets inside the PA layer provided different transport mechanisms for water, ions, and PFAS molecules, resulting in enhanced water permeability and PFAS rejection due to traveling through the membrane by both diffusions through the PA layer and the MXene intralayer channels. MXene nanosheets showed very promising capability as a 2D additive for tuning the structural and chemical properties of the PA layer at the permeability-rejection tradeoff.
Collapse
Affiliation(s)
- Tin Le
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Elnaz Jamshidi
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Majid Beidaghi
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
13
|
Guo L, Lei J, Zhang Y, Duan X, Wang X, Zhang Z, Wei Z, Li L, Guo Q, Liu X, Ning R, Wang J, Hu W, Wu W. MoS 2/MXene pillared nanocomposite for ultrafast photonics applications. NANOTECHNOLOGY 2022; 33:315701. [PMID: 35447608 DOI: 10.1088/1361-6528/ac68f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
In this work, we used nanocomposite saturable absorbers (SAs) in order to precisely design and modulate the process of compositing the light absorption by band gap engineering. Due to the higher absorption intensity of our MoS2/MXene nanocomposite, we have successfully shortened the pulse duration (1.2μs) of SA with enhancing saturable absorption intensity (7.22 MW cm-2), and the ultra-fast fiber laser based on this nanocomposite SA has shown wider Q-switching stable range in the case of high pump power. This strategy can efficiently improve the performance of SA and shows the potential application prospect of nanocomposites in nonlinear optics.
Collapse
Affiliation(s)
- Lihao Guo
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, People's Republic of China
| | - Jingjing Lei
- School of Physics and Optoelectronic Engineering, Xidian University, People's Republic of China
| | - Yongfeng Zhang
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, People's Republic of China
| | - Xinghao Duan
- School of Physics and Optoelectronic Engineering, Xidian University, People's Republic of China
| | - Xiaoli Wang
- School of Physics and Optoelectronic Engineering, Xidian University, People's Republic of China
| | - Zihao Zhang
- School of Physics and Optoelectronic Engineering, Xidian University, People's Republic of China
| | - Zhiyi Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, People's Republic of China
| | - Lan Li
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, People's Republic of China
| | - Qiyun Guo
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, People's Republic of China
| | - Xiaoyao Liu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, People's Republic of China
| | - Ruizhi Ning
- School of Areospace Science and Technology, Xidian University, People's Republic of China
| | - Junli Wang
- School of Physics and Optoelectronic Engineering, Xidian University, People's Republic of China
| | - Wenwen Hu
- School of Areospace Science and Technology, Xidian University, People's Republic of China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, People's Republic of China
| |
Collapse
|
14
|
|
15
|
Bai X, Hou S, Wang X, Hao D, Sun B, Jia T, Shi R, Ni BJ. Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00803j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Proposed scheme of the surface and interface engineering to improve the charge separation efficiency of MXene-based photocatalysts.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Shanshan Hou
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Xuyu Wang
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW)
- School of Civil and Environmental Engineering
- University of Technology Sydney (UTS)
- Sydney
- Australia
| | - Boxuan Sun
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Tianqi Jia
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Rui Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW)
- School of Civil and Environmental Engineering
- University of Technology Sydney (UTS)
- Sydney
- Australia
| |
Collapse
|