1
|
Wang YW, Chu T, Wang XL, Fan YQ, Cao L, Chen YH, Zhu YW, Liu HX, Ji XY, Wu DD. The role of cystathionine β-synthase in cancer. Cell Signal 2024; 124:111406. [PMID: 39270916 DOI: 10.1016/j.cellsig.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Cystathionine β-synthase (CBS) occupies a key position as the initiating and rate-limiting enzyme in the sulfur transfer pathway and plays a vital role in health and disease. CBS is responsible for regulating the metabolism of cysteine, the precursor of glutathione (GSH), an important antioxidant in the body. Additionally, CBS is one of the three enzymes that produce hydrogen sulfide (H2S) in mammals through a variety of mechanisms. The dysregulation of CBS expression in cancer cells affects H2S production through direct or indirect pathways, thereby influencing cancer growth and metastasis by inducing angiogenesis, facilitating proliferation, migration, and invasion, modulating cellular energy metabolism, promoting cell cycle progression, and inhibiting apoptosis. It is noteworthy that CBS expression exhibits complex changes in different cancer models. In this paper, we focus on the CBS synthesis and metabolism, tissue distribution, potential mechanisms influencing tumor growth, and relevant signaling pathways. We also discuss the impact of pharmacological CBS inhibitors and silencing CBS in preclinical cancer models, supporting their potential as targeted cancer therapies.
Collapse
Affiliation(s)
- Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Hong-Xia Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Zhang N, Sun Q, Li J, Li J, Tang L, Zhao Q, Pu Y, Liang G, He B, Gao W, Chen J. A lipid/PLGA nanocomplex to reshape tumor immune microenvironment for colon cancer therapy. Regen Biomater 2024; 11:rbae036. [PMID: 38628547 PMCID: PMC11018539 DOI: 10.1093/rb/rbae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
Immune checkpoint blockade therapy provides a new strategy for tumor treatment; however, the insufficient infiltration of cytotoxic T cells and immunosuppression in tumor microenvironment lead to unsatisfied effects. Herein, we reported a lipid/PLGA nanocomplex (RDCM) co-loaded with the photosensitizer Ce6 and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1MT to improve immunotherapy of colon cancer. Arginine-glycine-aspartic acid (RGD) as the targeting moiety was conjugated on 1,2-distearoyl-snglycero-3-phosphoethanolamine lipid via polyethylene glycol (PEG), and programmed cell death-ligand 1 (PD-L1) peptide inhibitor DPPA (sequence: CPLGVRGK-GGG-d(NYSKPTDRQYHF)) was immobilized on the terminal group of PEG via matrix metalloproteinase 2 sensitive peptide linker. The Ce6 and 1MT were encapsulated in PLGA nanoparticles. The drug loaded nanoparticles were composited with RGD and DPPA modified lipid and lecithin to form lipid/PLGA nanocomplexes. When the nanocomplexes were delivered to tumor, DPPA was released by the cleavage of a matrix metalloproteinase 2-sensitive peptide linker for PD-L1 binding. RGD facilitated the cellular internalization of nanocomplexes via avβ3 integrin. Strong immunogenic cell death was induced by 1O2 generated from Ce6 irradiation under 660 nm laser. 1MT inhibited the activity of IDO and reduced the inhibition of cytotoxic T cells caused by kynurenine accumulation in the tumor microenvironment. The RDCM facilitated the maturation of dendritic cells, inhibited the activity of IDO, and markedly recruited the proportion of tumor-infiltrating cytotoxic T cells in CT26 tumor-bearing mice, triggering a robust immunological memory effect, thus effectively preventing tumor metastasis. The results indicated that the RDCM with dual IDO and PD-L1 inhibition effects is a promising platform for targeted photoimmunotherapy of colon cancer.
Collapse
Affiliation(s)
- Nan Zhang
- Henan Academy of Sciences, Zhengzhou 450046, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiqi Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | | | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jianlin Chen
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
3
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
4
|
Zhao Z, Shan X, Zhang H, Shi X, Huang P, Sun J, He Z, Luo C, Zhang S. Nitric oxide-driven nanotherapeutics for cancer treatment. J Control Release 2023; 362:151-169. [PMID: 37633361 DOI: 10.1016/j.jconrel.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule endowed with diverse biological functions, offering vast potential in the realm of cancer treatment. Considerable efforts have been dedicated to NO-based cancer therapy owing to its good biosafety and high antitumor activity, as well as its efficient synergistic therapy with other antitumor modalities. However, delivering this gaseous molecule effectively into tumor tissues poses a significant challenge. To this end, nano drug delivery systems (nano-DDSs) have emerged as promising platforms for in vivo efficient NO delivery, with remarkable achievements in recent years. This review aims to provide a summary of the emerging NO-driven antitumor nanotherapeutics. Firstly, the antitumor mechanism and related clinical trials of NO therapy are detailed. Secondly, the latest research developments in the stimulation of endogenous NO synthesis are presented, including the regulation of nitric oxide synthases (NOS) and activation of endogenous NO precursors. Moreover, the emerging nanotherapeutics that rely on tumor-specific delivery of NO donors are outlined. Additionally, NO-driven combined nanotherapeutics for multimodal cancer theranostics are discussed. Finally, the future directions, application prospects, and challenges of NO-driven nanotherapeutics in clinical translation are highlighted.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinzhu Shan
- Department of State Key Laboratory of Natural and Biomimetic Drugs, College of Pharmaceutical Sciences, Peking University, Beijing 100871, PR China
| | - Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Peiqi Huang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
5
|
Ran C, Liu Y, Li K, Wang C, Pu J, Sun H, Wang L. Combined pollution effects of Cu and benzotriazole in rice (Oryza sativa L.) verified by split-root experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91997-92006. [PMID: 37479939 DOI: 10.1007/s11356-023-28695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
Although the combined effect of organic ligands and heavy metals in the environment on plants have been frequently reported, their complexed interaction in plants and the physiological effects remain to be revealed. Metal complexing agent benzotriazole (BTR) has extensive environmental pollution. In this study, root-splitting experiments were designed to identify the in vivo and in vitro effects of BTR on the accumulation and translocation of Cu in rice (Oryza sativa L.), and the concentrations and translocation factor (TF) of Cu and BTR in different parts of rice were measured. In the in vitro interaction treatments, low BTR concentrations enhanced Cu uptake and lateral transport in rice, while higher levels of BTR's exposure (i.e., ≥ 100 μM) resulted in opposite effects. Differently, significant increase in the lateral transport of Cu and vertical translocation of BTR in rice presented in the in vivo interaction treatments. TF of Cu from root A to root B (TFRA-RB) increased from 0.05 to 0.272 with the BTR concentration increasing from 0 to 100 μM, and higher TF of BTR from root to shoot (TFR-S), ranging from 1.00 to 1.75, compared with single BTR exposure treatments was observed. The phytotoxicity of BTR expressed by the catalase activity was significantly alleviated by the in vivo accumulated Cu in rice.
Collapse
Affiliation(s)
- Chunmei Ran
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yubin Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ke Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Chenye Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jian Pu
- Institute for Future Initiatives, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
- , Tianjin, China.
| |
Collapse
|
6
|
DDTC-Cu(I) based metal-organic framework (MOF) for targeted melanoma therapy by inducing SLC7A11/GPX4-mediated ferroptosis. Colloids Surf B Biointerfaces 2023; 225:113253. [PMID: 36934611 DOI: 10.1016/j.colsurfb.2023.113253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Disulfiram (DSF), a drug for alcohol withdrawal, has attracted extensive scientific attention due to its potential to treat cancer. The metabolite of DSF, diethyl dithiocarbamate (DDTC), forms a Cu-DDTC complex in vivo with copper ions, which has been shown to be a proteasome inhibitor with high antitumor activity. However, the in vivo stability of Cu-DDTC complexes remains a challenge. In this study, the nanomedicine Cu-BTC@DDTC with high antitumor activity was prepared by using the nanoscale metal-organic framework (MOF) Cu-BTC as a carrier and loading diethyldithiocarbamate (DDTC) through coordination interaction. The results showed that Cu-BTC@DDTC had high drug loading and adequate stability, and exhibited DDTC-Cu(I) chemical valence characteristics and polycrystalline structure features. In vitro cytocompatibility investigation and animal xenograft tumor model evaluation demonstrated the anti-cancer potential of Cu-BTC@DDTC, especially the combination of Cu-BTC@DDTC with low-dose cisplatin showed significant antitumor effect and biosafety. This study provides a feasible protocol for developing antitumor drugs based on the drug repurposing strategy.
Collapse
|
7
|
Zhang N, Li J, Gao W, Zhu W, Yan J, He Z, Li L, Wu F, Pu Y, He B. Co-Delivery of Doxorubicin and Anti-PD-L1 Peptide in Lipid/PLGA Nanocomplexes for the Chemo-Immunotherapy of Cancer. Mol Pharm 2022; 19:3439-3449. [PMID: 35994700 DOI: 10.1021/acs.molpharmaceut.2c00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combined delivery of chemotherapeutics with checkpoint inhibitors of the PD-1/PD-L1 pathway provides a new approach for cancer treatment. Small-molecule peptide inhibitors possess short production cycle, low immunogenicity, and fewer side effects; however, their potential in cancer therapy is hampered by the rapid biodegradation and a nanocarrier is needed for efficient drug delivery. Herein, anticancer drug doxorubicin (DOX) and PD-L1 inhibitor peptide P-12 are co-loaded by a lipid polymer nanocomplex based on poly(lactic-co-glycolic acid) (PLGA) and DSPE-PEG. Octaarginine (R8)-conjugated DSPE-PEG renders the LPN efficient internalization by cancer cells. The optimal nanomedicine LPN-30-R82K@DP shows a diameter of 125 nm and a DOX and P-12 loading content of 5.0 and 6.2%, respectively. LPN-30-R82K@DP exhibits good physiological stability and enhanced cellular uptake by cancer cells. It successfully induces immunogenic cell death and PD-L1 blockade in CT26 cancer cells. The in vivo antitumor study further suggests that co-loaded nanomedicine efficiently suppresses CT26 tumor growth and elicits antitumor immune response. This study manifests that lipid polymer nanocomplexes are promising drug carriers for the efficient chemo-immunotherapy of cancer.
Collapse
Affiliation(s)
- Nan Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wangwei Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jianqin Yan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Zhang H, Zhang Q, Guo Z, Liang K, Boyer C, Liu J, Zheng Z, Amal R, Yun SLJ, Gu Z. Disulfiram-loaded metal organic framework for precision cancer treatment via ultrasensitive tumor microenvironment-responsive copper chelation and radical generation. J Colloid Interface Sci 2022; 615:517-526. [DOI: 10.1016/j.jcis.2022.01.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022]
|
9
|
Ionic Liquids: Promising Approach for Oral Drug Delivery. Pharm Res 2022; 39:2353-2365. [PMID: 35449344 DOI: 10.1007/s11095-022-03260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
Abstract
Oral administration is the most preferred route for drug administration in clinic. However, due to unsatisfactory physicochemical properties of drugs and various physiological barriers, the oral bioavailability of most poorly water-soluble and macromolecules drugs is low and the therapeutic effect is unsatisfactory. Ionic liquids (ILs), molten salts with unique properties, show amazing potential for oral delivery. In addition to being able to form active pharmaceutical ingredients based ILs (API-ILs) to overcome drug solubility and polymorphism issues, ILs have also been used to enhance the solubility of poorly soluble drugs, enhance drug stability in the gastrointestinal environment, improve drug permeability in intestinal mucus, and facilitate drug penetration across the intestinal epithelial barrier. Furthermore, ILs were attempted as formulation components to develop novel oral drug delivery systems. This review focus on the application progress of ILs in oral drug delivery and the mechanisms. The challenges and perspectives of the development of ILs-based oral delivery systems are also discussed. This article reviews the latest advances of ionic liquids for oral drug delivery, focusing on the application and related mechanisms of ionic liquids in improving the drug physicochemical properties and enhancing drug delivery across physiological barriers.
Collapse
|
10
|
A facile synthesis of Cu(II) diethyldithiocarbamate from monovalent copper-cysteamine and disulfiram. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials 2021; 281:121335. [PMID: 34979419 DOI: 10.1016/j.biomaterials.2021.121335] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) has been used as an alcoholism drug for 70 years. Recently, it has attracted increasing attention owing to the distinguished anticancer activity, which can be further potentiated by the supplementation of Cu2+. Although encouraging anticancer results are obtained in lab, the clinical outcomes of oral DSF are not satisfactory, which urges an in-depth understanding of the underlying mechanisms, bottlenecks, and proposal of potential methods to address the dilemma. In this review, a critical summarization of various molecular biological anticancer mechanisms of DSF/Cu2+ is provided and the predicament of orally delivering DSF in clinical oncotherapy is explained by the metabolic barriers. We highlight the recent advances in the DSF/Cu2+ delivery strategies and the emerging treatment regimens for cancer treatment. Last but not the least, we summarize the clinical trials regarding DSF and make a prospect of DSF/Cu-based cancer therapy.
Collapse
|