1
|
Liu Z, Fu S, Wang S, An P, Dong M, Wang Z, Yang H, Zhang Y, Gong Z, He K. Ultrathin carbon film as ultrafast rechargeable cathode for hybrid sodium dual-ion capacitor. NANOTECHNOLOGY 2024; 35:375601. [PMID: 38857588 DOI: 10.1088/1361-6528/ad55f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
The development of electrochemical energy storage devices has a decisive impact on clean renewable energy. Herein, novel ultrafast rechargeable hybrid sodium dual-ion capacitors (HSDICs) were designed by using ultrathin carbon film (UCF) as the cathode material. The UCF is synthesized by a simple low temperature catalytic route followed by an acid leaching process. UCF owns a large adsorption interface and number of additional active sites, which is due to the nitrogen doping. In addition, there exists several short-range order carbons on the surface of UCF, which are beneficial for anionic storage. An ultrafast rechargeable remarkable performance, remarkable anion hybrid storage capability and outstanding structure stability is fully tapped employing UCF as cathode for HSDICs. The electrochemical performance of UCF in a half-cell system at the operating voltage between 1.0 and 4.8 V, achieving an admirable specific discharge capacity of 358.52 mAh·g-1at 500 mA·g-1, and a high capacity retention ratio of 98.42% after cycling 2500 times at 1000 mA·g-1, respectively. Besides, with the support ofex-situTEM and EDS mapping, the structural stability principle and anionic hybrid storage mechanism of UCF electrode are investigated in depth. In the full-cell system, HSDICs with the UCF as cathode and hard carbon as anode also presents a super-long cycle stability (80.62% capacity retention ratio after cycling 1300 times at 1000 mA·g-1).
Collapse
Affiliation(s)
- Zhaomeng Liu
- School of Metallurgy, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, 300071 Tianjin, People's Republic of China
| | - Shizheng Fu
- School of Metallurgy, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
| | - Shuran Wang
- School of Foreign Languages, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
| | - Pengyan An
- School of Metallurgy, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
| | - Mohan Dong
- School of Metallurgy, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
| | - Zidan Wang
- School of Metallurgy, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
| | - Hao Yang
- School of Metallurgy, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
| | - Yilong Zhang
- School of Metallurgy, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
| | - Zhiqing Gong
- School of Metallurgy, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
| | - Kunyang He
- School of Metallurgy, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819 Liaoning, People's Republic of China
| |
Collapse
|
2
|
Liu Y, Wang J, Rong S, Zhao K, He K, Cheng S, Sun Y, Xiang H. Multifunctional Acetamide Additive Combined with LiNO 3 Co-Assists Low-Concentration Electrolyte Interfacial Stability for Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53405-53416. [PMID: 37937447 DOI: 10.1021/acsami.3c10616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Lithium metal batteries (LMBs) are expected to upgrade their energy density to meet the growing battery market demand; however, intractable lithium dendrites and prominent electrode-electrolyte interface problems have been the stumbling block to their practical applications. Electrolytes play a crucial role in LMBs and are directly involved in the establishment of the electrode-electrolyte interface. In particular, low-concentration electrolytes (LCEs) can significantly save electrolyte costs, but the interface issue is more noteworthy. Here, multifunctional acetamide (N-methyl-N-(trimethylsilyl)-trifluoroacetamide, MTA) and lithium nitrate (LiNO3) additives were introduced together to enhance the performance of LMBs in LCEs. The MTA additive effectively removes the trace water and corrosive HF from the electrolyte, thus suppressing lithium salt decomposition and enhancing the stability of LCEs. Moreover, the MTA additive can construct an inorganic-rich interphase layer on the cathode/anode surface to protect the electrode. Especially, MTA can cooperate with LiNO3 additive to suppress lithium dendrites and reduce interfacial impedance, thus effectively enhancing lithium metal anode stability. Benefiting from the introduction of MTA and LiNO3 additives in the LCEs, the Li||NMC811 metal battery still has a capacity of 110 mA h g-1 after 500 cycles at room temperature, while the reference batteries have failed. The rate capacity and high temperature (50 °C) performance of the Li||NCM811 batteries have also been significantly improved. Significantly, this research explores a cost-effective method of using multifunctional additives to enhance LMBs' stability in LCEs.
Collapse
Affiliation(s)
- Yongchao Liu
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jirui Wang
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Shengge Rong
- Chery New Energy Automobile Co., Ltd., Wuhu, Anhui 241003, P. R. China
| | - Kun Zhao
- Chery New Energy Automobile Co., Ltd., Wuhu, Anhui 241003, P. R. China
| | - Kunpeng He
- Chery New Energy Automobile Co., Ltd., Wuhu, Anhui 241003, P. R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Yi Sun
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Hongfa Xiang
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
3
|
Shi H, Wu Q, Bao J, Liang S, Hu Y, Shao R, Wang S, Shi J, Xu Z. Fe 2O 3 for stable K-ion storage: mechanism insight into dimensional construction from stress distribution and micro-tomography. Phys Chem Chem Phys 2023; 25:27606-27617. [PMID: 37811592 DOI: 10.1039/d3cp03495j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Fe2O3 is considered a potential electrode material owing to its high theoretical capacity, low cost, and non-toxic characteristics. However, the significant volume expansion and structural degradation during charging and discharging hinder its application in potassium ion batteries. The electrochemical properties of the electrode material are primarily influenced by the diffusion efficiency of ions and the mechanics of the object. From the construction of a one dimensional structure, a three-dimensional flower-like Fe2O3 with a high specific surface and low-dimensional spherical Fe2O3 were prepared. Considering the convenience and visualization of the research, micron-scale Fe2O3 was prepared, although the larger particle size will lose part of the capacity. Notably, compared with the spherical structure, the specific capacity of the flower structure was increased by about 100%. The von Mises stress distribution on the two structures was simulated by the finite element method, revealing the mechanism of electrode failure induced by volume expansion and confirming the vital role of the multidimensional system in relieving stress concentration and improving electrochemical performance. Furthermore, synchrotron radiation soft X-ray absorption spectrum and X-ray micro-tomography revealed the phase transformation process and reaction mechanism of Fe2O3 in potassium ion batteries. The dimensional structure construction strategy reported here can provide theoretical support for modifying transition metal oxides.
Collapse
Affiliation(s)
- Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Qingqing Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Jinxi Bao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Shuaitong Liang
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yanli Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Ruiqi Shao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Shuo Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Jie Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
4
|
Su Z, Huang J, Wang R, Zhang Y, Zeng L, Zhang Y, Fan H. Multilayer structure covalent organic frameworks (COFs) linking by double functional groups for advanced K + batteries. J Colloid Interface Sci 2023; 639:7-13. [PMID: 36796111 DOI: 10.1016/j.jcis.2023.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Covalent organic frameworks (COFs) are regarded as the potential and promising anode materials for potassium ion batteries (PIBs) on account of their robust and porous crystalline structure. In this work, multilayer structural COF connected by double functional groups, including imine and amidogent through a simple solvothermalprocess, have been successfully synthesized. The multilayer structure of COF can provide fast charge transfer and combine the merits of imine (the restraint of irreversible dissolution) and amidogent (the supply of more active sites). It presents superior potassium storage performance, including the high reversible capacity of 229.5 mAh g-1 at 0.2 A g-1 and outstanding cycling stability of 106.1 mAh g-1 at the high current density of 5.0 A g-1 after 2000 cycles, which is superior to the individual COF. The structural advantages of the covalent organic framework linking by double functional groups (d-COF) can develop a new road for that COF anode material for PIBs in further research.
Collapse
Affiliation(s)
- Zhihao Su
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jionghao Huang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Runhao Wang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yi Zhang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, College of Environment and Resources, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
5
|
Kadhim MM, Sadoon N, Abbas ZS, Hachim SK, Abdullaha SAH, Rheima AM. Exploring the role of 2D-C 2N monolayers in potassium ion batteries. J Mol Model 2023; 29:139. [PMID: 37055601 DOI: 10.1007/s00894-023-05539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
CONTEXT In recent years, undivided attention has been given to the unique properties of layered nitrogenated holey graphene (C2N) monolayers (C2NMLs), which have widespread applications (e.g., in catalysis and metal-ion batteries). Nevertheless, the scarcity and impurity of C2NMLs in experiments and the ineffective technique of adsorbing a single atom on the surface of C2NMLs have significantly limited their investigation and thus their development. Within this research study, we proposed a novel model, i.e., atom pair adsorption, to inspect the potential use of a C2NML anode material for KIBs through first-principles (DFT) computations. The maximum theoretical capacity of K ions reached 2397 mA h g-1, which was greater in contrast with that of graphite. The results of Bader charge analysis and charge density difference revealed the creation of channels between K atoms and the C2NML for electron transport, which increased the interactions between them. The fast process of charge and discharge in the battery was due to the metallicity of the complex of C2NML/K ions and because the diffusion barrier of K ions on the C2NML was low. Moreover, the C2NML has the advantages of great cycling stability and low open-circuit voltage (approximately 0.423 V). The current work can provide useful insights into the design of energy storage materials with high efficiency. METHODS In this research, we used B3LYP-D3 functional and 6-31 + G* basis with GAMESS program to calculate adsorption energy, open-circuit voltage, and maximum theoretical capacity of K ions on the C2NML.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq.
| | - Nasier Sadoon
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | | | - Safa K Hachim
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
6
|
Chen C, Deng Q, Zhang Q, Dong P, Zhong W, Hu J, Kang X, Yang C. PEDOT-intercalated NH 4V 3O 8 nanobelts as high-performance cathode materials for potassium ion batteries. J Colloid Interface Sci 2023; 633:619-627. [PMID: 36470141 DOI: 10.1016/j.jcis.2022.11.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Potassium ion batteries (PIBs) have great potential to replace lithium ion batteries (LIBs) for large-scale energy storage applications because of the low cost and earth abundance of potassium resources. However, it is critically challenging to exploit an appropriate cathode material to accommodate the large size of K+. Herein, a conducting polymer (PEDOT) intercalation method is utilized to tailor the interlayer spacing of NH4V3O8 nanobelts from 7.8 Å to 10.8 Å, and afford rich oxygen vacancies inside the vanadate, thus enhancing its electronic conductivity and accelerating the K+ insertion/extraction kinetics. Benefiting from these features, PEDOT-intercalated NH4V3O8 (PNVO) nanobelts deliver an improved capacity of 87 mA h g-1 at 20 mA g-1, high rate capability of 51 mA h g-1 at 500 mA g-1, and a stable cycle life (capacity retention of 92.5 % after 100 cycles at 50 mA g-1). Even cycled at 200 mA g-1, PNVO nanobelts feature a long cycle life over 300 cycles with a capacity retention of 71.7 %. This work is of great significance for exploitation of PIBs cathode with improved electrochemical performance through pre-intercalation and defect engineering.
Collapse
Affiliation(s)
- Changdong Chen
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Qiang Deng
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qimeng Zhang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Pengyuan Dong
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wentao Zhong
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Junhua Hu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiongwu Kang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chenghao Yang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Folic acid-based supramolecules for enhanced stability in potassium ion batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Chen Q, Li H, Li H, Wang R, Ma Q, Zhang L, Zhang C. Freestanding film formed with Sb-nanoplates embedded in flexible porous carbon nanofibers as a binder-free anode for high-performance wearable potassium-ion battery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Liu X, Tong Y, Wu Y, Zheng J, Sun Y, Li H. In-Depth Mechanism Understanding for Potassium-Ion Batteries by Electroanalytical Methods and Advanced In Situ Characterization Techniques. SMALL METHODS 2021; 5:e2101130. [PMID: 34928006 DOI: 10.1002/smtd.202101130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 06/14/2023]
Abstract
The advancement of potassium ion batteries (PIBs) stimulated by the dearth of lithium resources is accelerating. Major progresses on the electrochemical properties are based on the optimization of electrode materials, electrolytes, and other components. More significantly, the prerequisites for optimizing these key compositions are in-depth and comprehensive exploration of electrochemical reaction processes, including the evolution of morphology and structure, phase transition, interface behaviors, and K+ movement, etc. As a result, the obtained K+ storage mechanism via analyzing aforementioned reaction processes sheds light on furthering practical application of PIBs. Typical electrochemical analysis methods are capable of obtaining physical and chemical characteristics. The advent of in situ electrochemical measurements enables dynamic observation and monitoring, thereby gaining extensive insights into the intricate mechanism of capacity degradation and interface kinetics. By coupling with these powerful electrochemical characterization techniques, inspiring works in PIBs will burgeon into wide realms of energy storage fields. In this review, some typical electroanalytical tests and in situ hyphenated measurements are described with the main concentration on how these techniques play a role in investigating the potassium storage mechanism for PIBs and achieving encouraging results.
Collapse
Affiliation(s)
- Xi Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yong Tong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yuanji Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jiefeng Zheng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yingjuan Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Hongyan Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| |
Collapse
|