1
|
Yin Y, Zeng P, Duan Y, Wang J, Zhou W, Sun P, Li Z, Wang L, Liang H, Chen S. A spermine-responsive supramolecular chemotherapy system constructed from a water-soluble pillar[5]arene and a diphenylanthracene-containing amphiphile for precise chemotherapy. J Mater Chem B 2024; 12:8099-8106. [PMID: 39075949 DOI: 10.1039/d4tb00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Stimuli-responsive supramolecular chemotherapy, particularly in response to cancer biomarkers, has emerged as a promising strategy to overcome the limitations associated with traditional chemotherapy. Spermine (SPM) is known to be overexpressed in certain cancers. In this study, we introduced a novel supramolecular chemotherapy system triggered by SPM. The system featured pyridine salts of a diphenylanthracene derivative (PyEn) and a complementary water-soluble pillar[5]arene (WP5C5) with long alkyl chains. The diphenylanthracene unit of PyEn is effectively encapsulated within the long alkyl chains of WP5C5, resulting in a substantial reduction in the cytotoxicity of PyEn towards normal cells. The therapeutic effect of PyEn is selectively triggered intracellularly through SPM, leading to the endosomal release of PyEn and concurrent in situ cytotoxicity. This supramolecular chemotherapy system exhibits notable tumor inhibition against SPM-overexpressed cancers with reduced side effects on normal tissues. The supramolecular strategy for intracellular activation provides a novel tool with potential applications in chemotherapeutic interventions, offering enhanced selectivity and reduced cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Yongfei Yin
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Pei Zeng
- Department of Urology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1277, Wuhan, Hubei 430022, China.
| | - Yifan Duan
- Department of Urology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1277, Wuhan, Hubei 430022, China.
| | - Jun Wang
- Department of Urology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1277, Wuhan, Hubei 430022, China.
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Penghao Sun
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Zhanting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Lu Wang
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Huageng Liang
- Department of Urology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1277, Wuhan, Hubei 430022, China.
| | - Shigui Chen
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| |
Collapse
|
2
|
Li Y, Huang F, Stang PJ, Yin S. Supramolecular Coordination Complexes for Synergistic Cancer Therapy. Acc Chem Res 2024; 57:1174-1187. [PMID: 38557015 DOI: 10.1021/acs.accounts.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Supramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of the Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of the Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| |
Collapse
|
3
|
Patra R, Halder S, Saha R, Jana K, Sarkar K. Highly Efficient Photoswitchable Smart Polymeric Nanovehicle for Gene and Anticancer Drug Delivery in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:2299-2323. [PMID: 38551335 DOI: 10.1021/acsbiomaterials.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Over the past few decades, there has been significant interest in smart drug delivery systems capable of carrying multiple drugs efficiently, particularly for treating genetic diseases such as cancer. Despite the development of various drug delivery systems, a safe and effective method for delivering both anticancer drugs and therapeutic genes for cancer therapy remains elusive. In this study, we describe the synthesis of a photoswitchable smart polymeric vehicle comprising a photoswitchable spiropyran moiety and an amino-acid-based cationic monomer-based block copolymer using reversible addition-fragmentation chain transfer (RAFT) polymerization. This system aims at diagnosing triple-negative breast cancer and subsequently delivering genes and anticancer agents. Triple-negative breast cancer patients have elevated concentrations of Cu2+ ions, making them excellent targets for diagnosis. The polymer can detect Cu2+ ions with a low limit of detection value of 9.06 nM. In vitro studies on doxorubicin drug release demonstrated sustained delivery at acidic pH level similar to the tumor environment. Furthermore, the polymer exhibited excellent blood compatibility even at the concentration as high as 500 μg/mL. Additionally, it displayed a high transfection efficiency of approximately 82 ± 5% in MDA-MB-231 triple-negative breast cancer cells at an N/P ratio of 50:1. It is observed that mitochondrial membrane depolarization and intracellular reactive oxygen species generation are responsible for apoptosis and the higher number of apoptotic cells, which occurred through the arrest of the G2/M phase of the cell cycle were observed. Therefore, the synthesized light-responsive cationic polymer may be an effective system for diagnosis, with an efficient anticancer drug and gene carrier for the treatment of triple-negative breast cancer in the future.
Collapse
Affiliation(s)
- Rishik Patra
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Satyajit Halder
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Rima Saha
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
4
|
Li X, Shen M, Yang J, Liu L, Yang YW. Pillararene-Based Stimuli-Responsive Supramolecular Delivery Systems for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313317. [PMID: 38206943 DOI: 10.1002/adma.202313317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cancer poses a significant challenge to global public health, seriously threatening human health and life. Although various therapeutic strategies, such as chemotherapy (CT), radiotherapy, phototherapy, and starvation therapy, are applied to cancer treatment, their limited therapeutic effect, severe side effects, and unsatisfactory drug release behavior need to be carefully considered. Thus, there is an urgent need to develop efficient drug delivery strategies for improving cancer treatment efficacy and realizing on-demand drug delivery. Notably, pillararenes, as an emerging class of supramolecular macrocycles, possess unique properties of highly tunable structures, superior host-guest chemistry, facile modification, and good biocompatibility, which are widely used in cancer therapy to achieve controllable drug release and reduce the toxic side effects on normal tissues under various internal/external stimuli conditions. This review summarizes the recent advance of stimuli-responsive supramolecular delivery systems (SDSs) based on pillararenes for tumor therapy from the perspectives of different assembly methods and hybrid materials, including molecular-scale SDSs, supramolecular nano self-assembly delivery systems, and nanohybrid SDSs. Moreover, the prospects and critical challenges of stimuli-responsive SDSs based on pillararenes for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Meili Shen
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Jie Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Linlin Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Ying-Wei Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| |
Collapse
|
5
|
Fooladi S, Nematollahi MH, Iravani S. Nanophotocatalysts in biomedicine: Cancer therapeutic, tissue engineering, biosensing, and drug delivery applications. ENVIRONMENTAL RESEARCH 2023; 231:116287. [PMID: 37263475 DOI: 10.1016/j.envres.2023.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Photocatalysis can be considered as a green technology owing to its excellent potential for sustainability and fulfilling several principles of green chemistry. This process uses light radiation as the primary energy source, preventing or reducing the requirement for artificial light sources and exogenous catalytic entities. Photocatalysis has promising applications in biomedicine such as drug delivery, biosensing, tissue engineering, cancer therapeutics, etc. In targeted cancer therapeutics, photocatalysis can be employed in photodynamic therapy to form reactive oxygen species that damage cancerous cells' structure. Nanophotocatalysts can be used in targeted drug delivery, showing potential applications in nuclear-targeted drug delivery along with specific delivery of chemotherapeutics to cancer cells or tumor sites. On the other hand, in tissue engineering, nanophotocatalysts can be employed in designing scaffolds that promote cell growth and tissue regeneration. However, some important challenges pertaining to the performance of photocatalysis, large-scale production of nanophotocatalysts, optimization of reaction/synthesis conditions, long-term biosafety issues, stability, clinical translation, etc. still need further explorations. Herein, the most recent advancements pertaining to the biomedical applications of nanophotocatalysts are reflected, focusing on drug delivery, tissue engineering, biosensing, and cancer therapeutic potentials.
Collapse
Affiliation(s)
- Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
6
|
Han XN, Han Y, Chen CF. Recent advances in the synthesis and applications of macrocyclic arenes. Chem Soc Rev 2023; 52:3265-3298. [PMID: 37083011 DOI: 10.1039/d3cs00002h] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Macrocyclic arenes including calixarenes, resorcinarenes, cyclotriveratrylene, pillararenes and so on have emerged as highly attractive synthetic macrocyclic hosts due to their unique structures, facile functionalization, and broad range of applications. In recent years, there has been growing interest in the development of novel macrocyclic arenes composed of various aromatic building blocks bridged by methylene groups, which have found applications in various research areas. Consequently, the development of novel macrocyclic arenes has become a frontier and hot topic in supramolecular and macrocyclic chemistry. In this review, we feature the recent advances in the synthesis and applications of novel macrocyclic arenes that have emerged in the last decade. The general synthetic strategies employed for these macrocyclic arenes are systematically summarized, and their wide applications in molecular recognition and assemblies, molecular machines, biomedical science and functional materials are highlighted.
Collapse
Affiliation(s)
- Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Sun P, Li Z, Zhang D, Zeng W, Zheng Y, Mei L, Chen H, Gao N, Zeng X. Multifunctional biodegradable nanoplatform based on oxaliplatin prodrug cross-linked mesoporous polydopamine for enhancing cancer synergetic therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Hazarika B, Singh VP. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Cheng L, Zeng F, Wang X. Study on the Complexation Properties of Promellitic Diimide- Extended Pillar[6]aren and Carboxylate Guests. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Wang W, Li Z, Song C, Yang J, Yang Y. Separation of Low-Molecular-Weight Organics by Water-Soluble Macrocyclic Arenes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238554. [PMID: 36500648 PMCID: PMC9736317 DOI: 10.3390/molecules27238554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
In this study, we fabricate a series of water-soluble anionic macrocyclic arenes, including pillar[5]arene (WP5), pillar[6]arene (WP6), leaning pillar[6]arene (WLT6), and biphenyl-extended pillar[6]arene (WBpP6), which show different separation capabilities toward low-molecular-weight organics, such as short chain haloalkanes, cyclic aliphatics, and aromatics, in water. The liquid-liquid distribution experiments are carried out at room temperature. The separation factor for low-molecular-weight organics is evaluated in the extraction of equimolar mixtures. WP6 demonstrates a high extraction efficiency of up to 89% in separating toluene/methylcyclohexane mixtures. These adsorbents also have the advantages of rapid adsorption, high separation efficiency, remarkable selectivity, and good recyclability. This work not only expands the application scope of macrocyclic chemistry, but also has practical research value for organics separation and water purification.
Collapse
|
11
|
Feng H, Chen Y, Wang R, Niu P, Shi C, Yang Z, Cheng M, Jiang J, Wang L. Chiral selection of Tröger's base-based macrocycles with different ethylene glycol chains length in crystallization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Wu JR, Wu G, Yang YW. Pillararene-Inspired Macrocycles: From Extended Pillar[ n]arenes to Geminiarenes. Acc Chem Res 2022; 55:3191-3204. [PMID: 36265167 DOI: 10.1021/acs.accounts.2c00555] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
chemistry since their establishment due to their innate functional features of molecular recognition and complexation. The rapid development of modern supramolecular chemistry has also significantly benefited from creating new macrocycles with distinctive geometries and properties. For instance, pillar[n]arenes (pillarenes), a relatively young generation of star macrocyclic hosts among the well-established ones (e.g., crown ethers, cyclodextrins, cucurbiturils, and calixarenes), promoted a phenomenal research hotspot all over the world in the past decade. Although the synthesis, host-guest properties, and various supramolecular functions of pillarenes have been intensively studied, many objective limitations and challenges still cannot be ignored. For example, high-level pillar[n]arenes (n > 7) usually do not possess applicable large-sized cavities due to structural folding and cannot be synthesized on a large scale because of the uncompetitive cyclization process. Furthermore, two functional groups must be covalently para-connected to each repeating phenylene unit, which severely limits their structural diversity and flexibility. In this context, we have developed a series of pillarene-inspired macrocycles (PIMs) using a versatile and modular synthetic strategy during the past few years, aiming to break through the synthetic limitations in traditional pillarenes and find new opportunities and challenges in supramolecular chemistry and beyond. Specifically, by grafting biphenyl units into the pillarene backbones, extended pillar[n]arenes with rigid and nanometer-sized cavities could be obtained with reasonable synthetic yields by selectively removing hydroxy/alkoxy substitutes on pillarene backbones, leaning pillar[6]arenes and leggero pillar[n]arenes with enhanced structural flexibility and cavity adaptability were obtained. By combining the two types of bridging modes in pillarenes and calixarenes, a smart macrocyclic receptor with two different but interconvertible conformational features, namely geminiarene, was discovered. Benefiting from the synthetic accessibility, facile functionalization, and superior host-guest properties in solution or the solid state, this new family of macrocycles has exhibited a broad range of applications, including but not limited to supramolecular assembly/gelation/polymers, pollutant detection and separation, porous organic polymers, crystalline/amorphous molecular materials, hybrid materials, and controlled drug delivery. Thus, in this Account, we summarize our research efforts on these PIMs. We first present an overview of their design and modular synthesis and a summary of their derivatization strategies. Thereafter, particular attention is paid to their structural features, supramolecular functions, and application exploration. Finally, the remaining challenges and perspectives are outlined for their future development. We hope that this Account and our works can stimulate further advances in synthetic macrocyclic chemistry and supramolecular functional systems, leading to practical applications in various research areas.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
13
|
Li Y, Lou X, Wang C, Wang Y, Jia Y, Lin Q, Yang Y. Synthesis of stimuli-responsive pillararene-based supramolecular polymer materials for the detection and separation of metal ions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Zhang R, You X, Luo M, Zhang X, Fang Y, Huang H, Kang Y, Wu J. Poly(β-cyclodextrin)/platinum prodrug supramolecular nano system for enhanced cancer therapy: Synthesis and in vivo study. Carbohydr Polym 2022; 292:119695. [PMID: 35725183 DOI: 10.1016/j.carbpol.2022.119695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
The use of cisplatin is restricted by systemic toxicity and drug resistance. Supramolecular nano-drug delivery systems involving drugs as building blocks circumvent these limitations promisingly. Herein, we describe a novel supramolecular system [Pt(IV)-SSNPs] based on poly(β-cyclodextrin), which was synthesized for efficient loading of adamantly-functionalized platinum(IV) prodrug [Pt(IV)-ADA2] via the host-guest interaction between β-cyclodextrin and adamantyl. Pt(IV)-ADA2 can be converted to active cisplatin in reducing environment in cancer cells, which further reduces systemic toxicity. The introduction of the adamantane group-tethered mPEG2k endowed the Pt(IV)-SSNPs with a longer blood circulation time. In vitro assays exhibited that the Pt(IV)-SSNPs could be uptaken by CT26 cells, resulting in cell cycle arrest in the G2/M and S phases, together with apoptosis. Furthermore, the Pt(IV)-SSNPs showed effective tumor accumulation, better antitumor effect, and negligible cytotoxicity to major organs. These results indicate that supramolecular nanoparticles are a promising platform for efficient cisplatin delivery and cancer treatment.
Collapse
Affiliation(s)
- Ruhe Zhang
- School of Biomedical Engineering; State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Moucheng Luo
- School of Biomedical Engineering; State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyu Zhang
- School of Biomedical Engineering; State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- School of Biomedical Engineering; State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Li MP, Yang N, Xu WR. Synthesis of a new water-soluble hexacarboxylated tribenzotriquinacene derivative and its competitive host-guest interaction for drug delivery. Beilstein J Org Chem 2022; 18:539-548. [PMID: 35615534 PMCID: PMC9112186 DOI: 10.3762/bjoc.18.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
A new water-soluble hexacarboxylated tribenzotriquinacene derivative (TBTQ-CB6) was synthesized and used as a supramolecular drug carrier to load the model anticancer drugs dimethyl viologen (MV) and doxorubicin (DOX) via host-guest interactions. The drugs could be effectively released by spermine (SM), a molecule overexpressed in cancer cells, through host-guest competitive substitution since TBTQ-CB6 has a stronger binding affinity toward SM than MV and DOX. The host-guest interactions of the complexes of TBTQ-CB6 with MV, DOX and SM were investigated by NMR spectroscopy and fluorescence spectroscopy. The association stoichiometry of the complexes of TBTQ-CB6 with MV, DOX, and SM was found to be 1:1 with association constants of K a = (7.67 ± 0.34) × 104 M-1, K a = (6.81 ± 0.33) × 104 M-1, and K a = (5.09 ± 0.98) × 105 M-1, respectively. The competitive substitution process was visualized by NMR titration. This novel TBTQ-based host-guest drug delivery system may have potential use in supramolecular chemotherapy.
Collapse
Affiliation(s)
- Man-Ping Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Department of Chemistry, School of Science or School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Nan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Department of Chemistry, School of Science or School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Department of Chemistry, School of Science or School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| |
Collapse
|
16
|
Wang Q, Fan J, Bian X, Yao H, Yuan X, Han Y, Yan C. A microenvironment sensitive pillar[5]arene-based fluorescent probe for cell imaging and drug delivery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Characterization of MgO/CaO hybrid nanorods as an enhanced inorganic carrier of 5-Fluorouracil drug; loading, release, and cytotoxicity studies. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02256-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Electrochemical determination of paraquat using a glassy carbon electrode decorated with pillararene-coated nitrogen-doped carbon dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Shen Z, Ma N, Wang F, Ren J, Hou C, Chao S, Pei Y, Pei Z. pH- and H2O2-sensitive drug delivery system based on sodium xanthate: Dual-responsive supramolecular vesicles from one functional group. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Jiang S, Mao W, Mao D, Li ZT, Ma D. AND molecular logic gates based on host-guest complexation operational in live cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Qu G, Jiang T, Liu T, Ma X. Multifunctional Host Polymers Assist Au Nanoclusters Achieve High Quantum Yield and Mitochondrial Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2023-2028. [PMID: 34931515 DOI: 10.1021/acsami.1c21109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The high biocompatibility and excellent photostability of Au nanoclusters (AuNCs) make them stand out in the bioimaging of nanoparticles. However, the low quantum yield and inferior targeting ability of water-soluble AuNCs greatly limit their biological applications. In this study, we designed and synthesized multifunctional host polymers PolySC4AP and FGGC@AuNCs to fabricate PolySC4AP/FGGC@AuNC assemblies via a host-guest interaction based on SC4 (sulfonatocalix[4]arene) and positively charged FGGC ligands (phenylalanine-glycine-glycine-cysteine). Owing to the host-guest assembly strategy and rigid polymer matrix, the quantum yield of FGGC@AuNCs was significantly promoted from 7.0 to 35.3%, accompanied by considerable morphological changes of FGGC@AuNCs. Moreover, PolySC4AP/FGGC@AuNCs could monitor the location of mitochondria along with R (Pearson's correlation coefficients) value for the co-localization as high as 0.9605, which provided a novel strategy for targeted bioimaging with luminophore.
Collapse
Affiliation(s)
- Guojuan Qu
- Key Laboratory for Multiphase Materials Chemical Engineering, Institute of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tao Jiang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tao Liu
- Key Laboratory for Multiphase Materials Chemical Engineering, Institute of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
|
23
|
Abukhadra MR, Adlii A, Khim JS, Ajarem JS, Allam AA. Insight into the Technical Qualification of the Sonocogreen CaO/Clinoptilolite Nanocomposite (CaO (NP)/Clino) as an Advanced Delivery System for 5-Fluorouracil: Equilibrium and Cytotoxicity. ACS OMEGA 2021; 6:31982-31992. [PMID: 34870021 PMCID: PMC8637967 DOI: 10.1021/acsomega.1c04725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Clinoptilolite as a natural zeolite was integrated with green CaO nanoparticles forming the green nanocomposite CaO(NP)/Clino. The CaO(NP)/Clino composite was assessed as a potential carrier for 5-fluorouracil (5-FL) drug. The CaO(NP)/Clino carrier achieved an enhanced 5-FL loading capacity of 305.3 mg/g as compared to 163 mg/g for pure clinoptilolite. The kinetics of the 5-FL loading follow the properties of the pseudo-first-order model, while the equilibrium results are related to the Langmuir isotherm. Therefore, the 5-FL loading processes occurred in the monolayer formed by homogeneous active loading receptors on the surface of the CaO(NP)/Clino carrier. The Gaussian energy of the 5-FL loading reaction (9.2 KJ/mol) reflected the dominant effect for the chemical mechanisms, especially the zeolitic ion-exchange mechanisms. Additionally, the thermodynamic parameters suggested endothermic, feasible, and spontaneous properties for the occurred 5-FL loading reactions. The release profile of 5-FL from CaO(NP)/Clino has continuous and long properties (150 h) at pH 1.2 (gastric fluid) and pH 7.4 (intestinal fluid). The kinetic studies of the release reactions show considerable agreement with Higuchi, Hixson-Crowell, and Korsmeyer-Peppas models. Such high fitting results and the diffusion exponent values (0.49 at pH 1.2 and 0.48 at pH 7.4) reflected the release properties of the Fickian transport behavior involving complex erosion and diffusion mechanisms. The cytotoxicity study of CaO(NP)/Clino on colorectal normal cells (CCD-18Co) declare the safe and biocompatible effect as a carrier for the 5-FL drug. Additionally, CaO(NP)/Clino as a carrier causes considerable enhancement for the cytotoxic effect of the loaded 5-FL drug on colon cancer cells (HCT-116).
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
| | - Alyaa Adlii
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
| | - Jong Seong Khim
- School
of Earth & Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jamaan S. Ajarem
- Zoology
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ahmed A. Allam
- Zoology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| |
Collapse
|
24
|
Yang J, Dai D, Cai Z, Liu YQ, Qin JC, Wang Y, Yang YW. MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with macrocycle nanovalves for plant growth regulation. Acta Biomater 2021; 134:664-673. [PMID: 34329784 DOI: 10.1016/j.actbio.2021.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Controllable and on-demand delivery of agrochemicals such as plant hormones is conducive to improving agrochemicals utilization, tackling water and environmental pollution, reducing soil acidification, and realizing the goals of precision agriculture. Herein, a smart plant hormone delivery system based on metal-organic frameworks (MOFs) and supramolecular nanovalves, namely gibberellin (GA)-loaded CLT6@PCN-Q, is constructed through supramolecular host-guest interaction to regulate the growth of dicotyledonous Chinese cabbage and monocotyledonous wheat. The porous nanoscale MOF (NMOF) with a uniform diameter of 97 nm modified by quaternary ammonium (Q) stalks is served as a cargo reservoir, followed by the decoration of carboxylated leaning tower[6]arene (CLT6) based nanovalves on NMOF surfaces through host-guest interactions to fabricate CLT6@PCN-Q with a diameter of ∼101 nm and a zeta potential value of -13.2 mV. Interestingly, the as-fabricated supramolecular nanoplatform exhibits efficient cargo loading and multi-stimuli-responsive release under various external stimuli including pH, temperature, and competitive agent spermine (SPM), which can realize the on-demand release of cargo. In addition, GA-loaded CLT6@PCN-Q is capable of effectively promoting the seeds germination of wheat and stem growth of dicotyledonous Chinese cabbage and monocotyledonous wheat (1.86 and 1.30 times of control groups, respectively). The smart supramolecular nanoplatform based on MOFs and supramolecular nanovalves paves a way for the controlled delivery of plant hormones and other agrochemicals for promoting plant growth, offering new insights and methods to realize precision agriculture. STATEMENT OF SIGNIFICANCE: To achieve controllable and sustainable release of cargos such as agrochemicals, a smart MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with supramolecular nanovalves was fabricated via the host-guest interaction between quaternary ammonium stalks-functionalized nanoMOFs and water-soluble leaning tower[6]arene. The as-prepared supramolecular nanoplatform with uniform diameter distribution demonstrated good cargo release in response to various external stimuli. The installation of synthetic macrocycles could effectively reduce cargo loss in the pre-treatment process. This type of supramolecular nanoplatform exhibited good promoting effect on seed germination and plant growth dicotyledonous Chinese cabbage and monocotyledonous wheat. As an eco-friendly, controlled, and efficient cargo delivery system, this supramolecular nanoplatform will be a promising candidate in precision agriculture and controlled drug release to attract the broad readership.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Dihua Dai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Zhi Cai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yu-Qing Liu
- College of Plant Science, Jilin University, Changchun 130012, PR China
| | - Jian-Chun Qin
- College of Plant Science, Jilin University, Changchun 130012, PR China
| | - Yan Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
25
|
Dai D, Yang J, Yang YW. Supramolecular Assembly with Aggregation-Induced Emission Property for Sensing and Detection. Chemistry 2021; 28:e202103185. [PMID: 34622985 DOI: 10.1002/chem.202103185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 12/31/2022]
Abstract
The fabrication of new supramolecular materials for real-time detection of analytes including ions, organic pollutants, gases, biomolecules, and drugs is of pivotal importance in industrial manufacture, clinical treatment, and environmental remediation. Incorporating fluorescent molecules with distinct aggregation-induced emission (AIE) effects into supramolecular assemblies has received much attention over the past two decades, owing to the remarkable performance of the AIE-active supramolecular materials in sensing and detection. In this minireview, we summarize the recent progress of superior detection systems on the basis of supramolecular assemblies accompanied with AIE features. We envision that this minireview will be helpful and timely for relevant researchers to stimulate new thinking for constructing new AIE-based supramolecular materials with advanced architectures for effective sensing and detection.
Collapse
Affiliation(s)
- Dihua Dai
- Jilin University, College of Chemistry, CHINA
| | - Jie Yang
- Jilin University, College of Chemistry, CHINA
| | - Ying-Wei Yang
- Jilin University, College of Chemistry, 2699 Qianjin Street, 130012, Changchun, CHINA
| |
Collapse
|
26
|
Chen J, Zhang Y, Zhang Y, Zhao L, Chen L, Chai Y, Meng Z, Jia X, Meng Q, Li C. Host-guest inclusion for enhancing anticancer activity of pemetrexed against lung carcinoma and decreasing cytotoxicity to normal cells. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Wu H, Wang H, Qi F, Xia T, Xia Y, Xu JF, Zhang X. An Activatable Host-Guest Conjugate as a Nanocarrier for Effective Drug Release through Self-Inclusion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33962-33968. [PMID: 34279919 DOI: 10.1021/acsami.1c09823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is a challenge in supramolecular chemotherapy for constructing a system equipped with both sufficient protection and high-efficiency release of drugs. To this end, a new strategy of an activatable host-guest conjugate with self-inclusion property is proposed. Based on the binding affinity gain of intramolecular host-guest self-inclusion, an activatable host-guest conjugate was designed, bearing cucurbit[7]uril as the host, an alkyl ammonium moiety as the guest, and the redox-responsive disulfide linkage. Oxaliplatin, a clinical antitumor drug, could be firmly encapsulated by the activatable host-guest conjugate to form the supramolecular drug with high stability. Moreover, oxaliplatin loaded in the activatable host-guest conjugate could be almost completely released by self-inclusion triggered by glutathione in a tumor microenvironment, thus exhibiting comparable antitumor bioactivity with naked oxaliplatin through in vitro cell experiments. It is highly anticipated that this line of research may open new horizons for programmable and on-demand supramolecular chemotherapy with high antitumor efficiency.
Collapse
Affiliation(s)
- Han Wu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feilong Qi
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|