1
|
Yang J, Zhu J, Xu R, Li H, Huang H. Tunable multi-enzyme activities of platinum nanoclusters for enhanced specificity and sensitivity in biosensing. Talanta 2025; 283:127173. [PMID: 39515051 DOI: 10.1016/j.talanta.2024.127173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/12/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Nanozymes have gained prominence for their utility in biosensing and disease diagnostics. However, challenges arise from complex sample matrices and nonspecific enzyme activities that contribute to false signals. This study introduces multifunctional platinum nanoclusters (Pt NCs) exhibiting peroxidase-like (POD-like), oxidase-like (OXD-like), and laccase-like activities tailored for enhanced biosensing capabilities. By adjusting pH, we optimized the conditions to achieve distinct POD-like and OXD-like responses, thereby reducing background signals and improving detection accuracy. The addition of ATP further amplified the POD-like activity while minimizing interference from OXD-like activity. This combined strategy substantially enhanced biomarker detection selectivity, demonstrated through glucose detection in human serum samples. Moreover, thiol inhibition of laccase-like activity in Pt NCs was leveraged for thiol-based antioxidant assessment, revealing their application in quantifying total antioxidant capacity (TAC) in human liver cancer cells, accounting for 44 % of TAC. The Pt NCs demonstrated robust sensitivity and reusability, offering a novel multi-enzyme nanomaterial with potential for precise and interference-free biosensing applications. These findings contribute to the development of advanced nanozyme-based biosensors, addressing specificity regulation challenges and expanding their practical application in biosensing and disease diagnostics.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jiayi Zhu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Ruishu Xu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Haiyan Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
2
|
Xia N, Li Y, He C, Deng D. Nanolabels Prepared by the Entrapment or Self-Assembly of Signaling Molecules for Colorimetric and Fluorescent Immunoassays. BIOSENSORS 2024; 14:597. [PMID: 39727862 PMCID: PMC11674709 DOI: 10.3390/bios14120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Nanomaterials have attracted significant attention as signal reporters for immunoassays. They can directly generate detectable signals or release a large number of signaling elements for readout. Among various nanolabels, nanomaterials composed of multiple signaling molecules have shown great potential in immunoassays. Generally, signaling molecules can be entrapped in nanocontainers or self-assemble into nanostructures for signal amplification. In this review, we summarize the advances of signaling molecules-entrapped or assembled nanomaterials for colorimetric and fluorescence immunoassays. The nanocontainers cover liposomes, polymers, mesoporous silica, metal-organic frameworks (MOFs), various nanosheets, nanoflowers or nanocages, etc. Signaling molecules mainly refer to visible and/or fluorescent organic dyes. The design and application of immunoassays are emphasized from the perspective of nanocontainers, analytes, and analytical performances. In addition, the future challenges and research trends for the preparation of signaling molecules-entrapped or assembled nanolabels are briefly discussed.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (C.H.); (D.D.)
| | | | | | | |
Collapse
|
3
|
Zhu X, Feng T, Chen Y, Xiao Y, Wen W, Wang S, Wang D, Zhang X, Liang J, Xiong H. Reactive Oxygen-Correlated Photothermal Imaging of Smart COF Nanoreactors for Monitoring Chemodynamic Sterilization and Promoting Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310247. [PMID: 38368267 DOI: 10.1002/smll.202310247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Chemodynamic therapy (CDT) has emerged as a promising approach for treating infected diabetic wounds, while reliable imaging technology for simultaneous monitoring of ROS and therapeutic processes is still a formidable challenge. Herein, smart covalent organic framework (COF) nanoreactors (COF NRs) are constructed by hyaluronic acid (HA) packaged glucose oxidase (GOx) covalently linked Fe-COF for diabetic wound healing. Upon the breakdown of the HA protective layer, GOx consumes glucose to produce gluconic acid and hydrogen peroxide (H2O2), resulting in decreased local pH and H2O2 supplementation. Density functional theory (DFT) calculations show that Fe-COF has high catalytic activity towards H2O2, leading to in situ generation of hydroxyl radicals (·OH) for sterilization, and the localized downregulation of glucose effectively improved the microenvironment of diabetic wounds. Meanwhile, based on the near-infrared photothermal imaging of oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), the authors showed that TMB can be applied for the point-of-care testing of ·OH and glucose, and assessing the sterilization progress in vivo. More significantly, the facile photothermal signaling strategy can be extended to monitor various ROS-mediated therapeutic systems, enabling accurate prediction of treatment outcomes.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Tiantian Feng
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Yidan Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yan Xiao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Dong Wang
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jichao Liang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Huayu Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
4
|
Patil PD, Karvekar A, Salokhe S, Tiwari MS, Nadar SS. When nanozymes meet enzyme: Unlocking the dual-activity potential of integrated biocomposites. Int J Biol Macromol 2024; 271:132357. [PMID: 38772461 DOI: 10.1016/j.ijbiomac.2024.132357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Integrating enzymes and nanozymes in various applications is a topic of significant interest. The researchers have explored the encapsulation of enzymes using diverse nanostructures to create nanomaterial-enzyme hybrids. These nanomaterials introduce unique properties that contribute to the additional activity along with the stabilization of enzymes in immobilized form, enabling a cascade of second-order reactions. This review centers on dual-activity nanozymes, providing insights into their applications in biosensors and biocatalysis. These applications leverage the enhanced catalytic activity and stability offered by dual-activity nanozymes. These nanozymes find promising applications in fields like bioremediation, offering eco-friendly solutions for mitigating environmental pollution while showing potential in medical diagnostics. The review delves into various techniques for creating enzyme-nanozyme hybrid catalysts, including adsorption, encapsulation, and incorporation methods. The review also addresses the challenges that must be overcome, such as overlapping catalytic surfaces and disparities in reaction rates in multi-enzyme cascade reactions. It concludes by presenting strategies to tackle these issues and offers insights into the field's promising future, suggesting that machine learning may drive further advancements in enzyme-nanozyme integration. This comprehensive exploration illuminates the present and charts a promising course for future innovations in the seamless integration of enzymes and nanozymes, heralding a new era of catalytic possibilities.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Aparna Karvekar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Sakshi Salokhe
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
5
|
Liu P, Sun Q, Gai Z, Yang F, Yang Y. Dual-mode fluorescence and colorimetric smartphone-based sensing platform with oxidation-induced self-assembled nanoflowers for sarcosine detection. Anal Chim Acta 2024; 1306:342586. [PMID: 38692787 DOI: 10.1016/j.aca.2024.342586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Early prostatic cancer (PCa) diagnosis significantly improves the chances of successful treatment and enhances patient survival rates. Traditional enzyme cascade-based early cancer detection methods offer efficiency and signal amplification but are limited by cost, complexity, and enzyme dependency, affecting stability and practicality. Meanwhile, sarcosine (Sar) is commonly considered a biomarker for PCa development. It is essential to develop a Sar detection method based on cascade reactions, which should be efficient, low skill requirement, and suitable for on-site testing. RESULTS To address this, our study introduces the synthesis of organic-inorganic self-assembled nanoflowers to optimize existing detection methods. The Sar oxidase (SOX)-inorganic hybrid nanoflowers (Cu3(PO4)2:Ce@SOX) possess inherent fluorescent properties and excellent peroxidase activity, coupled with efficient enzyme loading. Based on this, we have developed a dual-mode multi-enzyme cascade nanoplatform combining fluorescence and colorimetric methods for the detection of Sar. The encapsulation yield of Cu3(PO4)2:Ce@SOX reaches 84.5 %, exhibiting a remarkable enhancement in catalytic activity by 1.26-1.29 fold compared to free SOX. The present study employing a dual-signal mechanism encompasses 'turn-off' fluorescence signals ranging from 0.5 μM to 60 μM, with a detection limit of 0.226 μM, and 'turn-on' colorimetric signals ranging from 0.18 μM to 60 μM, with a detection limit of 0.120 μM. SIGNIFICANCE Furthermore, our study developed an intelligent smartphone sensor system utilizing cotton swabs for real-time analysis of Sar without additional instruments. The nano-platform exhibits exceptional repeatability and stability, rendering it well-suited for detecting Sar in authentic human urine samples. This innovation allows for immediate analysis, offering valuable insights for portable and efficient biosensors applicable to Sar and other analytes.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Qian Sun
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhexu Gai
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
6
|
Wu L, Xiong J, Xiao G, Ju J, Sun W, Wang W, Ma Y, Ran R, Qiao Y, Li C, Yu L, Lu Z. Smart salt-responsive thread for highly sensitive microfluidic glucose detection in sweat. LAB ON A CHIP 2024; 24:776-786. [PMID: 38197467 DOI: 10.1039/d3lc00975k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Thread-based microfluidic colorimetric sensors have been deemed a potential tool that may be incorporated into textiles for non-invasive sweat analysis. Nevertheless, their poor performance significantly limits their practical uses in sweat glucose detection down to 20 μM. Herein, a microfluidic glucose sensing device containing a salt-responsive thread is developed for the highly sensitive detection of glucose in human sweat. By grafting a zwitterionic polymer brush-which could react to ionic strength by changing the conformation of the polymer chains from the collapsing state to the stretching state-onto the cotton thread, the salt-responsive thread was created. Compared to the pristine cotton thread, the modified thread has better ion-capture capabilities, a more noticeable swelling effect, and a higher ability to absorb water. These enable a significant enrichment of glucose when the saline solution passes through it. The salt-responsive thread was employed to construct a thread/paper-based microfluidic sensing device for the monitoring of glucose in artificial sweat, exhibiting a sensitivity of -0.255 μM-1 and a detection limit of 14.7 μM. In comparison to the pristine cotton thread-based device, the performance is significantly superior. Using a hydrophobic fabric and salt-responsive threads, a glucose-sensing headband was prepared for on-body sweat glucose monitoring. With the use of a smartphone-based image analysis system, the headband can detect the concentration of glucose in a volunteer's perspiration. Using the thread-based salt-responsive zwitterionic polymer brush might offer a novel approach to creating wearable sweat sensors with extremely high sensitivity.
Collapse
Affiliation(s)
- Liang Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
| | - Jing Xiong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
| | - Gang Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
| | - Jun Ju
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P. R. China
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore 138669, Singapore
| | - Yan Ma
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Ruilong Ran
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yan Qiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
| | - Changming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, P. R. China
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
| | - Zhisong Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
8
|
Braz JF, Dencheva NV, Tohidi SD, Denchev ZZ. Fast, Multiple-Use Optical Biosensor for Point-of-Care Glucose Detection with Mobile Devices Based on Bienzyme Cascade Supported on Polyamide 6 Microparticles. Polymers (Basel) 2023; 15:2802. [PMID: 37447448 DOI: 10.3390/polym15132802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Non-invasive glucose determination provides major advantages in health monitoring and protection. It enables widespread point-of-care testing, which is affordable, sensitive, specific, rapid and equipment-free. This work reports on the development and analytical performance of a colorimetric biosensor in detecting glucose in human urine. Highly porous polyamide microparticles were synthesized as the support for the glucose oxidase (GOx) and horseradish peroxidase (HRP) dyad, which was immobilized randomly or consecutively-first HRP and then GOx. The latter system was superior, as GH@PA-C showed much higher activity than the random system, and it was used to prepare the biosensor, along with the 3,3',5,5'-tetramethylbenzidine chromogen. When in contact with urine, the biosensor displayed a strict linear correlation between the color difference and the glucose concentration in urine in the range of 0.01-3.0 mM, as established by the CIELab image processing algorithm and UV-VIS measurements. The biosensor acted in 20 s and had a detection limit of 30.7 µM in urine, high operational activity at pH = 4-8 and unchanged detection performance after 30 days of storage. Its unique feature is the possibility of multiple consecutive uses without the serious deterioration of the recovery and dispersion values. These characteristics can open the way for new routines in non-invasive personal diabetes detection.
Collapse
Affiliation(s)
- Joana F Braz
- IPC-Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal
| | - Nadya V Dencheva
- IPC-Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal
| | - Shafagh D Tohidi
- DTx CoLab-Digital Transformation CoLab, University of Minho, 4800-056 Guimarães, Portugal
| | - Zlatan Z Denchev
- IPC-Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal
| |
Collapse
|
9
|
Huang X, Han Y, Li J, Tang M, Qing G. Sensitive and specific detection of saccharide species based on fluorescence: update from 2016. Anal Bioanal Chem 2023:10.1007/s00216-023-04703-w. [PMID: 37119357 PMCID: PMC10148015 DOI: 10.1007/s00216-023-04703-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
Increasing evidence supports the critical role of saccharides in various pathophysiological steps of tumor progression, where they regulate tumor proliferation, invasion, hematogenic metastasis, and angiogenesis. The identification and recognition of these saccharides provide a solid foundation for the development of targeted drug preparations, which are however not fully understood due to their complex and similar structures. In order to achieve fluorescence sensing of saccharides, extensive research has been conducted to design molecular probes and nanoparticles made of different materials. This paper aims to provide in-depth discussion of three main topics that cover the current status of the carbohydrate sensing based on the fluorescence sensing mechanism, including a phenylboronic acid-based sensing platform, non-boronic acid entities, as well as an enzyme-based sensing platform. It also highlights efforts made to understand the recognition mechanisms and improve the sensing properties of these systems. Finally, we present the challenge of achieving high selectivity and sensitivity recognition of saccharides, and suggest possible future avenues for exploration.
Collapse
Affiliation(s)
- Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | - Ying Han
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | - Junrong Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan, 430072, People's Republic of China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
10
|
Chen Y, Yang X, Lu C, Yang Z, Wu W, Wang X. Novel colorimetric, photothermal and up-conversion fluorescence triple-signal sensor for rosmarinic acid detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Photothermal-based nanomaterials and photothermal-sensing: An overview. Biosens Bioelectron 2022; 220:114883. [DOI: 10.1016/j.bios.2022.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
12
|
Smartphone-assisted bioenzyme-nanozyme-chromogen all-in-one test strip with enhanced cascade signal amplification for convenient paraoxon sensing. Biosens Bioelectron 2022; 215:114583. [DOI: 10.1016/j.bios.2022.114583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
|
13
|
Sun Y, Wen L, Ma H, Ma W, Fu Z, Li Y, Zhang C, Li L, Liu J. Engineering trienzyme cascade-triggered fluorescent immunosensor platform by sequentially integrating alkaline phosphatase, tyrosinase and horseradish peroxidase. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Yao S, Liao Y, Pan R, Zhu W, Xu Y, Yang Y, Qian X. Programmed co-assembly of DNA-peptide hybrid microdroplets by phase separation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Hierarchical micro- and mesoporous ZIF-8 with core-shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization. J Colloid Interface Sci 2021; 610:709-718. [PMID: 34863543 DOI: 10.1016/j.jcis.2021.11.123] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.
Collapse
|
16
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Zhang Y, Wang Y, Zhou Q, Chen X, Jiao W, Li G, Peng M, Liu X, He Y, Fan H. Precise Regulation of Enzyme-Nanozyme Cascade Reaction Kinetics by Magnetic Actuation toward Efficient Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52395-52405. [PMID: 34714628 DOI: 10.1021/acsami.1c15717] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Spatiotemporal regulation of multi-enzyme catalysis with stimuli is crucial in nature to meet different metabolic requirements but presents a challenge in artificial cascade systems. Here, we report a strategy for precise and tunable modulation of enzyme-nanozyme cascade reaction kinetics by remote magnetic stimulation. As a proof of concept, glucose oxidase (GOx) was immobilized onto a ferrimagnetic vortex iron oxide nanoring (Fe3O4 NR) functionalized with poly(ethylene glycol) of different molecular weights to construct a series of Fe3O4 NR@GOx with nanometer linking distances. The activities of GOx and the Fe3O4 NR nanozyme in these systems were shown to be differentially stimulated by Fe3O4 NR-mediated local heat in response to an alternating magnetic field (AMF), leading to modulated cascade reaction kinetics in a distance-dependent manner. Compared to the free GOx and Fe3O4 NR mixture, Fe3O4 NR(D2)@GOx with an optimum linking distance of 1 nm exhibits a superior kinetic match between GOx and the Fe3O4 NR nanozyme and over a 400-fold higher cascade activity under AMF exposure. This enables remarkable intracellular reactive oxygen species production and significantly improved tumor inhibition of AMF-stimulated Fe3O4 NR(D2)@GOx in 4T1 tumor-bearing mice. The strategy reported here offers a straightforward new tool for fine-tuning multi-enzyme catalysis at the molecular level using magnetic stimuli and holds great promise for use in a variety of biotechnology and synthetic biology applications.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Yanyun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Qi Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Xiaoyong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Galong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences & School of Medicine, Northwest University, 229 Taibai North Road, Xi'an Shaanxi 710069, P. R. China
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences & School of Medicine, Northwest University, 229 Taibai North Road, Xi'an Shaanxi 710069, P. R. China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences & School of Medicine, Northwest University, 229 Taibai North Road, Xi'an Shaanxi 710069, P. R. China
| |
Collapse
|
18
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Shen KH, Lu CH, Kuo CY, Li BY, Yeh YC. Smart near infrared-responsive nanocomposite hydrogels for therapeutics and diagnostics. J Mater Chem B 2021; 9:7100-7116. [PMID: 34212171 DOI: 10.1039/d1tb00980j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanocomposite (NC) hydrogels are emerging biomaterials that possess desirable and defined properties and functions for therapeutics and diagnostics. Particularly, nanoparticles (NPs) are employed as stimulus-transducers in NC hydrogels to facilitate the treatment process by providing controllable structural change and payload release under internal and external simulations. Among the various external stimuli, near-infrared (NIR) light has attracted considerable interest due to its minimal photo-damage, deep tissue penetration, low auto-fluorescence in living systems, facile on/off switch, easy remote and spatiotemporal control. In this study, we discuss four types of transducing nanomaterials used in NIR-responsive NC hydrogels, including metal-based nanoparticles, carbon-based nanomaterials, polydopamine nanoparticles (PDA NPs), and upconversion nanoparticles (UCNPs). This review provides an overview of the current progress in NIR-responsive NC hydrogels, focusing on their preparation, properties, applications, and future prospects.
Collapse
Affiliation(s)
- Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Yu Kuo
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Bo-Yan Li
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|