1
|
Miao J, Jiang Y, Wang X, Li X, Zhu Y, Shao Z, Long M. Correlating active sites and oxidative species in single-atom catalyzed Fenton-like reactions. Chem Sci 2024; 15:11699-11718. [PMID: 39092108 PMCID: PMC11290428 DOI: 10.1039/d4sc02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yunyao Jiang
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT7 1NN UK
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- Department of Chemical Engineering, Curtin University Perth 6845 Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
2
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
3
|
Li Z, Xu N, Zhang Y, Liu W, Wang J, Ma M, Fu X, Hu X, Xu W, Han ZK. Unveiling the Structure of Oxygen Vacancies in Bulk Ceria and the Physical Mechanisms behind Their Formation. J Phys Chem Lett 2024; 15:5868-5874. [PMID: 38804522 DOI: 10.1021/acs.jpclett.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding the structures of oxygen vacancies in bulk ceria is crucial as they significantly impact the material's catalytic and electronic properties. The complex interaction between oxygen vacancies and Ce3+ ions presents challenges in characterizing ceria's defect chemistry. We introduced a machine learning-assisted cluster-expansion model to predict the energetics of defective configurations accurately within bulk ceria. This model effectively samples configurational spaces, detailing oxygen vacancy structures across different temperatures and concentrations. At lower temperatures, vacancies tend to cluster, mediated by Ce3+ ions and electrostatic repulsion, while at higher temperatures, they distribute uniformly due to configurational entropy. Our analysis also reveals a correlation between thermodynamic stability and the band gap between occupied O 2p and unoccupied Ce 4f orbitals, with wider band gaps indicating higher stability. This work enhances our understanding of defect chemistry in oxide materials and lays the groundwork for further research into how these structural properties affect ceria's performance.
Collapse
Affiliation(s)
- Zheng Li
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ning Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yujing Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaqian Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meiliang Ma
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaolan Fu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaojuan Hu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Heterogeneous Photocatalytic Degradation, Part II: Focus on Oxygen Vacancy. ACS OMEGA 2024; 9:6093-6127. [PMID: 38371849 PMCID: PMC10870278 DOI: 10.1021/acsomega.3c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Environmental problems, including the increasingly polluted water and the energy crisis, have led to a need to propose novel strategies/methodologies to contribute to sustainable progress and enhance human well-being. For these goals, heterogeneous semiconducting-based photocatalysis is introduced as a green, eco-friendly, cost-effective, and effective strategy. The introduction of anion vacancies in semiconductors has been well-known as an effective strategy for considerably enhancing the photocatalytic activity of such photocatalytic systems, giving them the advantages of promoting light harvesting, facilitating photogenerated electron-hole pair separation, optimizing the electronic structure, and enhancing the yield of reactive radicals. This Review will introduce the effects of anion vacancy-dominated photodegradation systems. Then, their mechanism will illustrate how an anion vacancy changes the photodegradation pathway to enhance the degradation efficiency toward pollutants and the overall photocatalytic performance. Specifically, the vacancy defect types and the methods of tailoring vacancies will be briefly illustrated, and this part of the Review will focus on the oxygen vacancy (OV) and its recent advances. The challenges and development issues for engineered vacancy defects in photocatalysts will also be discussed for practical applications and to provide a promising research direction. Finally, some prospects for this emerging field will be proposed and suggested. All permission numbers for adopted figures from the literature are summarized in a separate file for the Editor.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| | - Ahmad Reza Massah
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| |
Collapse
|
5
|
Wang J, Liu S, Tang M, Fu W, Wang Y, Yin K, Dai Y. Thermodynamically and Kinetically Stabilized Pt Clusters Against Sintering on CeO 2 Nanofibers Through Enclosing CeO 2 Nanocubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300547. [PMID: 37093186 DOI: 10.1002/smll.202300547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Sintering is a major concern for the deactivation of supported metals catalysts, which is driven by the force of decreasing the total surface energy of the entire catalytic system. In this work, a double-confinement strategy is demonstrated to stabilize 2.6 nm-Pt clusters against sintering on electrospun CeO2 nanofibers decorated by CeO2 nanocubes (m-CeO2 ). Thermodynamically, with the aid of CeO2 -nanocubes, the intrinsically irregular surface of polycrystalline CeO2 nanofibers becomes smooth, offering adjacent Pt clusters with decreased chemical potential differences on a relatively uniform surface. Kinetically, the Pt clusters are physically restricted on each facet of CeO2 nanocubes in a nanosized region. In situ high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation reveals that the Pt clusters can be stabilized up to 800 °C even in a high density, which is far beyond their Tammann temperature, without observable size growth or migration. Such a sinter-resistant catalytic system is endowed with boosted catalytic activity toward both the hydrogenation of p-nitrophenol after being aged at 500 °C and the sinter-promoting exothermic oxidation reactions (e.g., soot oxidation) at high temperatures over 700 °C. This work offers new opportunities for exploring sinter-resistant nanocatalysts, starting from the rational design of whole catalytic system in terms of thermodynamic and kinetic aspects.
Collapse
Affiliation(s)
- Jun Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Suting Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Mingyu Tang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yunpeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| |
Collapse
|
6
|
Zhang S, Zhao F, Yasin G, Dong Y, Zhao J, Guo Y, Tsiakaras P, Zhao J. Efficient photocatalytic hydrogen evolution: Linkage units engineering in triazine-based conjugated porous polymers. J Colloid Interface Sci 2023; 637:41-54. [PMID: 36682117 DOI: 10.1016/j.jcis.2023.01.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Conjugated porous polymers (CPPs) have been widely reported as promising photocatalysts. However, the realization of powerful photocatalytic hydrogen production performance still benefits from the rational design of molecular frameworks and the appropriate choice of building monomers. Herein, we synthesized two novel conjugated porous polymers (CPPs) by copolymerizing pyrene and 1,3,5-triazine building blocks. It is found that minor structural changes in the peripheral groups of the triazine units can greatly affect the photocatalytic activity of the polymers. Compared with the phenyl-linkage unit, the thiophene-linkage unit can give CPP a wider absorption range of visible light, a narrower band gap, a higher transmission and separation efficiency of photo-generated carriers (electrons/holes), and a better interface contact with the photocatalytic reaction solution. The catalyst containing thiophene-triazine (ThPy-CPP) has an efficient photocatalytic hydrogen evolution rate of 21.65 and 16.69 mmol g-1h-1 under full-arc spectrum and visible light without the addition of a Pt co-catalyst, respectively, much better than the one containing phenyl-triazine (PhPy-CPP, only 5.73 and 3.48 mmol g-1h-1). This study provides a promising direction to design and construct highly efficient, cost-effective CPP-based photocatalysts, for exploring the application of noble metal-free catalysts in photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Shengling Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China
| | - Ghulam Yasin
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518060, China
| | - YunYun Dong
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems Department of Mechanical Engineering School of Engineering, University of Thessaly 1 Sekeri Str., Pedion Areos 38834 Greece.
| | - Jie Zhao
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Liu Q, Yang P, Tan W, Yu H, Ji J, Wu C, Cai Y, Xie S, Liu F, Hong S, Ma K, Gao F, Dong L. Fabricating Robust Pt Clusters on Sn-Doped CeO 2 for CO Oxidation: A Deep Insight into Support Engineering and Surface Structural Evolution. Chemistry 2023; 29:e202203432. [PMID: 36567623 DOI: 10.1002/chem.202203432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
The size effect on nanoparticles, which affects the catalysis performance in a significant way, is crucial. The tuning of oxygen vacancies on metal-oxide support can help reduce the size of the particles in active clusters of Pt, thus improving catalysis performance of the supported catalyst. Herein, Ce-Sn solid solutions (CSO) with abundant oxygen vacancies have been synthesized. Activated by simple CO reduction after loading Pt species, the catalytic CO oxidation performance of Pt/CSO was significantly better than that of Pt/CeO2 . The reasons for the elevated activity were further explored regarding ionic Pt single sites being transformed into active Pt clusters after CO reduction. Due to more exposed oxygen vacancies, much smaller Pt clusters were created on CSO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm). Consequently, more exposed active Pt clusters significantly improved the ability to activate oxygen and directly translated to the higher catalytic oxidation performance of activated Pt/CSO catalysts in vehicle emission control applications.
Collapse
Affiliation(s)
- Qinglong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peng Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Haowei Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiawei Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, United States
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, United States
| | - Song Hong
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100027, China
| | - Kaili Ma
- Analysis and Testing Center, Southeast University, Nanjing, 211189, China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Shang Y, Kan Y, Xu X. Stability and regeneration of metal catalytic sites with different sizes in Fenton-like system. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Wang M, Li C, Liu B, Qin W, Xie Y. Facile Synthesis of Nano-Flower β-Bi 2O 3/TiO 2 Heterojunction as Photocatalyst for Degradation RhB. Molecules 2023; 28:molecules28020882. [PMID: 36677940 PMCID: PMC9863065 DOI: 10.3390/molecules28020882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Photocatalysis is a hopeful technology to solve various environmental problems, but it is still a technical task to produce large-scale photocatalysts in a simple and sustainable way. Here, nano-flower β-Bi2O3/TiO2 composites were prepared via a facile solvothermal method, and the photocatalytic performances of β-Bi2O3/TiO2 composites with different Bi/Ti molar ratios were studied. The nano-flower Bi2O3/TiO2 composites were studied by SEM, XRD, XPS, BET, and PL. The PL result proved that the construction of staggered heterojunction enhanced the separation efficiency of carriers. The degradation RhB was applied to study the photocatalytic performances of prepared materials. The results showed that the degradation efficiency of RhB increased from 61.2% to 99.6% when the molar ratio of Bi/Ti was 2.1%. It is a mesoporous approach to enhance photocatalytic properties by forming heterojunction in Bi2O3/TiO2 composites, which increases the separation efficiency of the generated carriers and improves photocatalytic properties. The photoactivity of the Bi2O3/TiO2 has no evident changes after the fifth recovery, indicating that the Bi2O3/TiO2 composite has distinguished stability.
Collapse
Affiliation(s)
- Mingjun Wang
- Academy of Art & Design, Nanchang Institute of Technology, Nanchang 330044, China
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Che Li
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Bingfang Liu
- Academy of Art & Design, Nanchang Institute of Technology, Nanchang 330044, China
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Wenzhen Qin
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
- Correspondence: (W.Q.); (Y.X.)
| | - Yu Xie
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
- Correspondence: (W.Q.); (Y.X.)
| |
Collapse
|
10
|
Zhao J, Lu Y, Wu D, Qin Y, Xie Y, Guo Y, Raza W, Luo G, Asim Mushtaq M, Wu Y, Mu X, Ling Y, Ilyas T, Ul Hassan Q, Gao C. Regulating divalent metal species in aluminum-based layered double hydroxides to selectively promote photocatalytic CO production from CO2. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Yan J, Gong L, Chai S, Guo C, Zhang W, Wan H. Insights into a newly discovered mechanism for 1O2 formation in a chlorine ion-mediated sulfate radical-advanced oxidation process system for levofloxacin degradation in an aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Novel 2D/2D BiOBr/Zn(OH)2 photocatalysts for efficient photoreduction CO2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Ultrafast synthesizing nanoflower-like composites of metal carbides and metal oxyhydroxides towards high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Liu K, Wang M, Tsang DCW, Liu L, Tan Q, Li J. Facile path for copper recovery from waste printed circuit boards via mechanochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129638. [PMID: 35933860 DOI: 10.1016/j.jhazmat.2022.129638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Recycling copper (Cu0) from waste printed circuit boards (PCBs) is a prevalent challenge. Here, we propose a new pathway and reveal mechanisms for recovering Cu0 from waste PCBs via a mechanochemical approach. The successful application of mechanical force avoids using inorganic acid in the Cu0 recovery process. Our work demonstrates that ferric chloride (FeCl3) was superior to ferric sulfate and ferric nitrate as a solid-phase reagent for Cu0 recovery due to chloride complexation. Under the induction of mechanical force, the Cu0 in the waste PCBs was oxidized by Fe3+ and complexed by Cl¯ to form a meta-stable cuprous chloride, which was susceptible to leaching in an acidic liquid-phase system constructed by hydrolysis of ferric salt. Further mechanism analysis reveals that in the mechanochemical solid-phase reaction, Cu0, metallic impurities, metal oxides, and carbon materials from waste PCBs could also reduce Fe3+ to Fe2+. The optimum conditions for Cu0 recovery from waste PCB powder with FeCl3 as a solid-phase reagent were: rotational speed of 500 rpm, Cu0:Fe3+ molar ratio of 1:20, and reaction time of 120 min, achieving the highest recovery of 99.6 wt%. This study presents a facile path for Cu0 recovery from waste PCBs for resource circulation.
Collapse
Affiliation(s)
- Kang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mengmeng Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Environmental Technology and Management, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lili Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanyin Tan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Yang Q, Qin W, Xie Y, Zong K, Guo Y, Song Z, Luo G, Raza W, Hussain A, Ling Y, Luo J, Zhang W, Ye H, Zhao J. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Lower oxygen vacancy concentration in BiPO4 with unexpected higher photocatalytic activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Qin P, Chen D, Li M, Li D, Gao Y, Zhu S, Mu M, Lu M. Melamine/MIL-101(Fe)-derived magnetic carbon nanotube-decorated nitrogen-doped carbon materials as sorbent for rapid removal of organic dyes from environmental water sample. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Qi S, Zhang K, Zhang Y, Zhang R, Xu H. TiO2/Zn0.5Cd0.5S heterojunction for efficient photocatalytic degradation of methylene blue and its photocatalytic mechanism. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Abd Elkodous M, El-Khawaga AM, Abdel Maksoud MIA, El-Sayyad GS, Alias N, Abdelsalam H, Ibrahim MA, Elsayed MA, Kawamura G, Lockman Z, Tan WK, Matsuda A. Enhanced photocatalytic and antimicrobial performance of a multifunctional Cu-loaded nanocomposite under UV light: theoretical and experimental study. NANOSCALE 2022; 14:8306-8317. [PMID: 35660850 DOI: 10.1039/d2nr01710e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to modern industrialization and population growth, access to clean water has become a global challenge. In this study, a metal-semiconductor heterojunction was constructed between Cu NPs and the Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix for the photodegradation of potassium permanganate, hexavalent chromium Cr(VI) and p-nitroaniline (pNA) under UV light. In addition, the electronic and adsorption properties after Cu loading were evaluated using density functional theory (DFT) calculations. Moreover, the antimicrobial properties of the prepared samples toward pathogenic bacteria and unicellular fungi were investigated. Photocatalytic measurements show the outstanding efficiency of the Cu-loaded nanocomposite compared to that of bare Cu NPs and the composite matrix. Degradation efficiencies of 44% after 80 min, 100% after 60 min, and 65% after 90 min were obtained against potassium permanganate, Cr(VI), and pNA, respectively. Similarly, the antimicrobial evaluation showed high ZOI, lower MIC, higher protein leakage amount, and cell lysis of nearly all microbes treated with the Cu-loaded nanocomposite.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
- Faculty of Medicine, Galala University, Suez, Egypt
| | - M I A Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nurhaswani Alias
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- Theoretical Physics Department, National Research Centre, El-Buhouth Str., Dokki, Giza, 12622, Egypt
| | - Medhat A Ibrahim
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo, 11837, Egypt
- Molecular Spectroscopy and Modeling Unit, Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Zainovia Lockman
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Wai Kian Tan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
20
|
Zhang XS, Zhao HT, Liu Y, Li WZ, Luo N, Luan J. Ligand-induced synthesis of two Cu-based coordination polymers and derivation of carbon-coated metal oxide heterojunctions for enhanced photocatalytic degradation. Dalton Trans 2022; 51:17319-17327. [DOI: 10.1039/d2dt03023c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study two new Cu-CPs have been constructed as precursors for the preparation of carbon-coated metal oxide heterojunctions. Moreover, we have used Mo metal as a doping agent to boost the photodegradation activity of the CP-derived carbon nanostructures.
Collapse
Affiliation(s)
- Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Hong-Tian Zhao
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Nan Luo
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, 100819, P. R. China
| |
Collapse
|
21
|
Saeed M, Muneer M, Haq AU, Akram N. Photocatalysis: an effective tool for photodegradation of dyes-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:293-311. [PMID: 34523090 DOI: 10.1007/s11356-021-16389-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The disposal of dye-contaminated wastewater is a major concern around the world for which a variety of techniques are used for its treatment. The photocatalytic treatment of dye-contaminated wastewater is one of the treatment methods. Semiconductor-assisted photocatalytic treatment of dye-contaminated wastewater has gained pronounced attention recently. This review outlines the recent advancements in the photocatalytic treatment of dye-contaminated wastewater. The photocatalytic degradation of dyes follows three types of mechanisms: (1) dye sensitization through charge injection, (2) indirect dye degradation through oxidation/reduction, and (3) direct photolysis of dye. Several experimental parameters like initial concentration of dyes, pH, and catalyst dosage significantly affect the photocatalytic degradation of dyes. The photocatalytic materials can be categorized into three generations. The single-component (e.g., ZnO, TiO2) and multiple component semiconductor metal oxides (e.g., ZnO-TiO2, Bi2O3-ZnO) are categorized as first-generation and second-generation photocatalysts, respectively. The photocatalysts dispersed on an inert solid substrate (e.g., Ag-Al2O3, ZnO-C) are classified as third-generation photocatalysts. Finally, we reviewed the challenges that affect the photocatalytic degradation of dyes.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Chemistry, Government College University, Faisalabad, Pakistan.
| | - Majid Muneer
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Atta Ul Haq
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|