1
|
Zhu S, Chen A, Zhang J, Luo S, Yang J, Chai Y, Zeng J, Bai M, Yang Z, Lu G. Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136327. [PMID: 39481264 DOI: 10.1016/j.jhazmat.2024.136327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite's dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere.
Collapse
Affiliation(s)
- Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Jiale Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jizhao Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Youzheng Chai
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, PR China
| | - Ma Bai
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhenghang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Gen Lu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| |
Collapse
|
2
|
Wang D, Wu Q, Ren X, Niu M, Ren J, Meng X. Tunable Zeolitic Imidazolate Framework-8 Nanoparticles for Biomedical Applications. SMALL METHODS 2024; 8:e2301270. [PMID: 37997211 DOI: 10.1002/smtd.202301270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Zeolite imidazole framework-8 (ZIF-8) is the most prestigious one among zeolitic imidazolate framework (ZIF) with tunable dimensions and unique morphological features. Utilizing its synthetic adjustability and structural regularity, ZIF-8 exhibits enhanced flexibility, allowing for a wide range of functionalities, such as loading of nanoparticle components while preserving biomolecules activity. Extensive efforts are made from investigating synthesis techniques to develop novel applications over decades. In this review, the development and recent progress of various synthesis approaches are briefly summarized. In addition, its interesting properties such as adjustable porosity, excellent thermal, and chemical stabilities are introduced. Further, five representative biomedical applications are highlighted based on above physicochemical properties. Finally, the remaining challenges and offered insights into the future outlook are also discussed. This review aims to understand the co-relationships between structures and biomedical functionalities, offering the opportunity to construct attractive materials with promising characteristics.
Collapse
Affiliation(s)
- Dongdong Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Zaky MY, Mahmoud R, Farghali AA, Abd El-Raheem H, Hassaballa A, Mohany M, Alkhalifah DHM, Hozzein WN, Mohamed A. A New Cu/Fe Layer Double Hydroxide Nanocomposite Exerts Anticancer Effects against PC-3 Cells by Inducing Cell Cycle Arrest and Apoptosis. Biomedicines 2023; 11:2386. [PMID: 37760826 PMCID: PMC10525695 DOI: 10.3390/biomedicines11092386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Prostate cancer treatment poses significant challenges due to its varying aggressiveness, potential for metastasis, and the complexity of treatment options. Balancing the effectiveness of therapies, minimizing side effects, and personalizing treatment strategies are ongoing challenges in managing this disease. Significant advances in the use of nanotechnology for the treatment of prostate cancer with high specificity, sensitivity, and efficacy have recently been made. This study aimed to synthesize and characterize a novel Cu/Fe layer double hydroxide (LDH) nanocomposite for use as an anticancer agent to treat prostate cancer. Cu/Fe LDH nanocomposites with a molar ratio of 5:1 were developed using a simple co-precipitation approach. FT-IR, XRD, SEM, TEM, TGA, and zeta potential analyses confirmed the nanocomposite. Moreover, the MTT cell viability assay, scratch assay, and flow cytometry were utilized to examine the prospective anticancer potential of Cu/Fe LDH on a prostate cancer (PC-3) cell line. We found that Cu/Fe LDH reduced cell viability, inhibited cell migration, induced G1/S phase cell cycle arrest, and triggered apoptotic effect in prostate cancer cells. The findings also indicated that generating reactive oxygen species (ROS) formation could improve the biological activity of Cu/Fe LDH. Additionally, Cu/Fe LDH showed a good safety impact on the normal lung fibroblast cell line (WI-38). Collectively, these findings demonstrate that the Cu/Fe LDH nanocomposite exhibited significant anticancer activities against PC-3 cells and, hence, could be used as a promising strategy in prostate cancer treatment.
Collapse
Affiliation(s)
- Mohamed Y. Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.F.); (H.A.E.-R.)
| | - Hany Abd El-Raheem
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.F.); (H.A.E.-R.)
- Environmental Engineering Program, Zewail City of Science and Technology, October Gardens, Giza 12578, Egypt
| | - Ahmed Hassaballa
- Nutrition and Food Science, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, USA;
- ZeroHarm L.C., Farmington Hills, Farmington, MI 48333, USA
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Abdelrahman Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
4
|
Wang Y, Li S, Ren X, Yu S, Meng X. Nano-engineering nanomedicines with customized functions for tumor treatment applications. J Nanobiotechnology 2023; 21:250. [PMID: 37533106 PMCID: PMC10399036 DOI: 10.1186/s12951-023-01975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Nano-engineering with unique "custom function" capability has shown great potential in solving technical difficulties of nanomaterials in tumor treatment. Through tuning the size and surface properties controllablly, nanoparticles can be endoewd with tailored structure, and then the characteristic functions to improve the therapeutic effect of nanomedicines. Based on nano-engineering, many have been carried out to advance nano-engineering nanomedicine. In this review, the main research related to cancer therapy attached to the development of nanoengineering nanomedicines has been presented as follows. Firstly, therapeutic agents that target to tumor area can exert the therapeutic effect effectively. Secondly, drug resistance of tumor cells can be overcome to enhance the efficacy. Thirdly, remodeling the immunosuppressive microenvironment makes the therapeutic agents work with the autoimmune system to eliminate the primary tumor and then prevent tumor recurrence and metastasis. Finally, the development prospects of nano-engineering nanomedicine are also outlined.
Collapse
Affiliation(s)
- Yuxin Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shimei Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
5
|
Wu F, Guo Z, Cui K, Dong D, Yang X, Li J, Wu Z, Li L, Dai Y, Pan T. Insights into characteristics of white rot fungus during environmental plastics adhesion and degradation mechanism of plastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130878. [PMID: 36731319 DOI: 10.1016/j.jhazmat.2023.130878] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Since the 1980s, plastic waste in the environment has been accumulating, and little is known about fungi biodegradation, especially in dry environments. Therefore, the research on plastic degradation technology is urgent. In this study, we demonstrated that Phanerochaete chrysosporium (P. chrysposporium), a typical species of white rot fungi, could react as a highly efficient biodegrader of polylactic acid (PLA), and 34.35 % of PLA degradation was obtained during 35-day incubation. A similar mass loss of 19.71 % could be achieved for polystyrene (PS) degradation. Here, we presented the visualization of the plastic deterioration process and their negative reciprocal on cell development, which may be caused by the challenge of using PS as a substrate. The RNA-seq analysis indicated that adaptations in energy metabolism and cellular defense were downregulated in the PS group, while lipid synthesis was upregulated in the PLA-treated group. Possible differentially expressed genes (DEG) of plastic degradation, such as hydrophobic proteins, lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), Cytochrome P450 (CYP450), and genes involved in styrene or benzoic acid degradation pathways have been recorded, and we proposed a PS degradation pathway.
Collapse
Affiliation(s)
- Feiyan Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China.
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Jie Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhangzhen Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Tao Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials for cancer theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1797. [PMID: 35419993 DOI: 10.1002/wnan.1797] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Copper-based nanomaterials (Cu-based NMs) with favorable biocompatibility and unique properties have attracted the attention of many biomedical researchers. Cu-based NMs are one of the most widely studied materials in cancer treatment. In recent years, great progress has been made in the field of biomedicine, especially in the treatment and diagnosis of tumors. This review begins with the classification of Cu-based NMs and the recent synthetic strategies of Cu-based NMs. Then, according to the abundant and special properties of Cu-based NMs, their application in biomedicine is summarized in detail. For biomedical imaging, such as photoacoustic imaging, positron emission tomography imaging, and multimodal imaging based on Cu-based NMs are summarized, as well as strategies to improve the diagnostic effectiveness. Moreover, a series of unique structures and functions as well as the underlying property activity relationship of Cu-based NMs were shown to highlight their promising therapeutic performance. Cu-based NMs have been widely used in monotherapies, such as photothermal therapy (PTT) and chemodynamic therapy (CDT). Moreover, the sophisticated design in composition, structure, and surface fabrication of Cu-based NMs can endow these NMs with more modalities in cancer diagnosis and therapy. To further improve the efficiency of cancer treatment, combined therapy based on Cu-based NMs was introduced in detail. Finally, the challenges, critical factors, and future prospects for the clinical translation of Cu-based NMs as multifunctional theranostic agents were also considered and discussed. The aim of this review is to provide a better understanding and key consideration for the rational design of this increasingly important new paradigm of Cu-based NMs as theranostic agents. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiaoyan Zhong
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Liu X, Han Y, Shu Y, Wang J, Qiu H. Fabrication and application of 2,4,6-trinitrophenol sensors based on fluorescent functional materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127987. [PMID: 34896707 DOI: 10.1016/j.jhazmat.2021.127987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 05/06/2023]
Abstract
2,4,6-Trinitrophenol (TNP) has been widely used for a long time. The adverse effects of TNP on ecological environment and human health have promoted researchers to develop various methods for detecting TNP. Among multifarious technologies utilized for the TNP detection, fluorescence strategy based on different functional materials has become an effective and efficient method attributed to its merits such as preferable sensitivity and selectivity, rapid response speed, simple operation, and lower cost, which is also the focus of review. This review summarizes the development status of fluorescence sensors for TNP in a detailed and systematic way, especially focusing on the research progress since 2015. The sensing properties of fluorescent materials for TNP are the core of this review, including nanomaterials, organic small molecules, emerging supramolecular systems, aggregation induced emission materials and others. Moreover, the development direction and prospect of fluorescence sensing method in the field of TNP detection are introduced and discussed at the end of review.
Collapse
Affiliation(s)
- Xingchen Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
8
|
Zhang Z, Wang C, Yao Y, Zhang H, Na J, Zhou Y, Zhu Z, Qi J, Eguchi M, Yamauchi Y, Li J. Modular Assembly of MOF-derived Carbon Nanofibers into Macroarchitectures for Water Treatment. Chem Sci 2022; 13:9159-9164. [PMID: 36093027 PMCID: PMC9384821 DOI: 10.1039/d2sc02619h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
The organized assembly of nanoparticles into complex macroarchitectures opens up a promising pathway to create functional materials. Here, we demonstrate a scalable strategy to fabricate macroarchitectures with high compressibility and elasticity from hollow particle-based carbon nanofibers. This strategy causes zeolitic imidazolate framework (ZIF-8)-polyacrylonitrile nanofibers to assemble into centimetre-sized aerogels (ZIF-8/NFAs) with expected shapes and tunable functions on a large scale. On further carbonization of ZIF-8/NFAs, ZIF-8 nanoparticles are transformed into a hollow structure to form the carbon nanofiber aerogels (CNFAs). The resulting CNFAs integrate the properties of zero-dimensional hollow structures, one-dimensional nanofibers, and three-dimensional carbon aerogels, and exhibit a low density of 7.32 mg cm−3, high mechanical strength (rapid recovery from 80% strain), outstanding adsorption capacity, and excellent photo-thermal conversion potential. These results provide a platform for the future development of macroarchitectured assemblies from nanometres to centimetres and facilitate the design of multifunctional materials. A scalable strategy is established to generate macroarchitectures based on MOF-related nanofibers. The modular assembly of macroarchitectures with luffa-like structures exhibits high mechanical strength and low densities.![]()
Collapse
Affiliation(s)
- Zishi Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, Faculty of Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- Materials Architecturing Research Center, Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Miharu Eguchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, Faculty of Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, Faculty of Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| |
Collapse
|