1
|
Wang W, Wang Z, Wang Y, Sun L, Zhang J, Zhang Y, Luo A. A Chiral Porous Organic Polymer Used as the Stationary Phase for High-Resolution Gas Chromatography Separations. Chirality 2025; 37:e70011. [PMID: 39757884 DOI: 10.1002/chir.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
A chiral porous organic polymer (cPOP) was synthesized through nucleophilic substitution polymerization between dichloromaleimide and aromatic amine. This cPOP was used as a new chiral stationary phase (CSP) for gas chromatography (GC) chiral separation. In this work, we first used this cPOP as the CSP for gas chromatography to investigate its ability to separate racemic mixtures, including amino acid derivatives, chiral alcohols, aldehydes, alkanes, ketones, esters, and organic acids. The results showed that the column can effectively separate various racemic mixtures and achieve baseline separation of threonine (Rs = 1.91). Furthermore, the separation mechanism was elucidated by density functional theory (DFT) simulation. Additionally, the cPOP column demonstrated good repeatability and stability. The relative standard deviations (RSDs) for intraday were 0.11%-0.12% (n = 3) for the retention time of n-butyl glycidyl ether, 0.1%-0.34% (n = 3) for interday, and 2.25%-3.37% (n = 3) for column to column. This work shows that cPOP has good potential as chiral stationary phases in gas chromatography.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuwei Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yukui Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
2
|
Song Y, Li W, Ba M, Zhang Y, Liu H, Xu X, Su H, Cai Z, Liu X, Sun T. Ester-functionalized pillar[6]arene as the gas chromatographic stationary phase with high-resolution performance towards the challenging isomers of xylenes, diethylbenzenes, and ethyltoluenes. Anal Bioanal Chem 2024; 416:1321-1335. [PMID: 38231255 DOI: 10.1007/s00216-024-05146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
This work presents the first example of the utilization of polar ester group functionalized pillar[6]arene (P6A-C10-OAc) as a stationary phase for capillary gas chromatographic (GC) separations. The statically coated P6A-C10-OAc column showed a high column efficiency of 5393 plates/m and moderate polar nature. Its resolving capability and retention behaviors were investigated for a mixture of 20 analytes and more than a dozen isomers from apolar to polar in nature. As evidenced, the P6A-C10-OAc column achieved high-resolution separations of all the analytes and good inertness. Importantly, it exhibited distinctly advantageous performance for high resolution of the challenging isomers of xylenes, diethylbenzenes, ethyltoluenes, and halobenzenes over the commercial HP-5 (5% phenyl dimethyl polysiloxane), HP-35 (25% phenyl dimethyl polysiloxane), and PEG-20M (polyethylene glycol) columns.
Collapse
Affiliation(s)
- Yanli Song
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Wen Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Yuanyuan Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Haixin Liu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Xiang Xu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Haoyu Su
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China.
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China.
| |
Collapse
|
3
|
Sun Z, Qi M. End-modification of poly(ether-carbonate) copolymer by adamantane cages: An effective approach for improving the selectivity of gas chromatographic stationary phases. J Chromatogr A 2023; 1695:463940. [PMID: 36990034 DOI: 10.1016/j.chroma.2023.463940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
This work reports the investigation of a new poly(propylene-carbonate) copolymer terminated by the adamantane cages (APPC) as the stationary phase for gas chromatographic (GC) analyses. In GC, the selectivity of a stationary phase is the key factor that governs the column separation performance for analytes, particularly those of high similarity in structures and properties. As such, we employed more than a dozen of isomer mixtures of separation difficulty for investigating the separation performance of the APPC column, involving the isomers of alkanes, alkylbenzenes, halobenzenes phenols and anilines. Meanwhile, the column coated with poly(propylene carbonate) diol (PPCD) differing from APPC only in their terminal groups and two commercial columns coated with polyethylene glycol (PEG) and polysiloxane, respectively, were used as the reference columns. The separation results evidenced the distinctly advantageous performance of the APPC column over the reference columns. Moreover, the APPC column showed excellent repeatability and reproducibility with the relative standard deviation (RSD) values over the range of 0.01%-0.04% for run-to-run, 0.15%-0.28% for day-to-day and 3.4%-3.9% for column-to-column (n = 4). Its application to GC-MS analysis of the verbena essential oil demonstrated its separation advantages for a wide range of components in practical samples. Up to date, the adamantyl-terminated poly(ether-carbonate) copolymers have not been reported in any fields. Its high-resolution performance demonstrates the feasibility of adamantyl-terminated block copolymers as highly selective stationary phases for GC analyses, which offers a vast room for fundamental researches and applications.
Collapse
Affiliation(s)
- Ziqi Sun
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meiling Qi
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
4
|
A new stationary phase for capillary gas chromatography based on amphiphilic triblock copolymer – Benzimidazolium ionic liquid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Chen R, Cai Z, Huang Q, Zhang W, Jin K, Zhao Y, Li Y, Sun T, Ji H, Li S. Benzimidazolium Ionic‐Liquid‐Functionalized Star‐shaped Copolymer Stationary Phase for Capillary Gas Chromatography. ChemistrySelect 2022. [DOI: 10.1002/slct.202202847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruonan Chen
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Qiuchen Huang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Wei Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Keyun Jin
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Yi Zhao
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Yiwen Li
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Tao Sun
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Hongying Ji
- Shandong Center for Food and Drug Evaluation & Inspection Jinan 250014 P. R. China
| | - Shuai Li
- Key Laboratory for Chemical Drug Research of Shandong Province Institute of Pharmaceutical Sciences of Shandong Province Jinan 250101 P. R. China
| |
Collapse
|
6
|
Huang Y, Chen J, Fu G, Zhang C, Qiu H. A new stationary phase based on porous graphene for capillary gas chromatography. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanni Huang
- Xinjiang Uygur Autonomous Region Fiber Quality Monitoring Center Urumqi P. R. China
- College of Chemistry and Chemical Engineering Xinjiang Normal University Urumqi P. R. China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou P. R. China
| | - Gafang Fu
- College of Chemistry and Chemical Engineering Xinjiang Normal University Urumqi P. R. China
| | - Chi Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou P. R. China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou P. R. China
- College of Chemistry and Chemical Engineering Xinjiang Normal University Urumqi P. R. China
| |
Collapse
|
7
|
A chiral porous organic polymer COP-1 used as stationary phase for HPLC enantioseparation under normal-phase and reversed-phase conditions. Mikrochim Acta 2022; 189:360. [PMID: 36042107 DOI: 10.1007/s00604-022-05448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/07/2022] [Indexed: 10/14/2022]
Abstract
A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel-Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes. The effects of analyte mass and column temperature on the separation efficiency of racemic compounds were investigated. In addition, the chiral resolution ability of the COP-1-packed column not only can be complementary in RPLC/NPLC modes but also exhibit a good chiral recognition complementarity with Chiralpak AD-H column and chiral porous organic cage (POC) NC1-R column. The relative standard deviations (RSD) (n = 5) of the retention time, resolution value, and peak area by repeated separation of 1-(4-chiorophenyl)ethanol are all below 3.0%. The COP-1 column shows high column efficiency (e.g., 17,320 plates m-1 for 1-(4-chlorophenyl)ethanol on COP-1 column in NPLC), high enantioselectivity, and good reproducibility toward various racemates. This work demonstrates that chiral POPs microspheres are promising chiral materials for HPLC enantioseparation.
Collapse
|
8
|
He Y, Zheng B, Qi M, Huo L. High selectivity of a novel D–A structured copolymer as a gas chromatographic stationary phase toward aromatic isomers. NEW J CHEM 2022. [DOI: 10.1039/d2nj00724j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a new π-conjugated copolymer with D–A structure (PBDB-T) as the stationary phase for gas chromatography (GC) with high resolving performance towards aromatic isomers of high similarity in structure and properties.
Collapse
Affiliation(s)
- Yongrui He
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Bing Zheng
- School of Chemistry Beihang University, Beijing, 100191, China
| | - Meiling Qi
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lijun Huo
- School of Chemistry Beihang University, Beijing, 100191, China
| |
Collapse
|