1
|
Sun G, Liu L, Zhang J, Zhang Z, She M, Chen J, Liu P, Zhang S, Li J. Modular Assembly of Chalcones, N-Tosylhydrazones, and KSCN/KSeCN for the Synthesis of Trisubstituted Imidazo[2,1- b][1,3,4]thiadiazoles/selenadiazoles. Org Lett 2025. [PMID: 39899432 DOI: 10.1021/acs.orglett.4c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
A modular protocol that achieved the efficient synthesis of imidazo[2,1-b][1,3,4]thiadiazoles/selenadiazoles via using easily available N-tosylhydrazones, chalcone derivatives, and KSCN/KSeCN is proposed. The method overcomes the elongated synthesis steps and prefunctionalized synthons of previous methods. It solves the problem of traditional preparation methods, which makes it difficult to synthesize thickened selenium-containing heterocyclic molecules, further expanding the number of members in its family. The fluorescence of these compounds also reveals the potential values of the scaffolds we synthesized.
Collapse
Affiliation(s)
- Guojin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Lang Liu
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, Shaanxi, P. R. China
| | - Jun Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Zhe Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
2
|
Chen Y, Zhang C, Wang K, Li M, Tang H, Cheng W, Yin J, Yi W. Cu(I)-Catalyzed Three-Component Annulation for the Synthesis of 3-Acyl Imidazo[1, 5- a]Pyridines from 2-Pyridinyl-Substituted p-Quinone Methides, Terminal Alkynes, and TsN 3 Using O 2 as the Oxygen Source. J Org Chem 2024; 89:5423-5433. [PMID: 38557074 DOI: 10.1021/acs.joc.3c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Currently, most conventional methods to achieve imidazo[1,5-a]pyridines have limitations for the synthesis of 3-acyl imidazo[1,5-a]pyridines. Herein, a novel and efficient Cu(I)-catalyzed three-component annulation method for the synthesis of valuable 3-acyl imidazo[1,5-a]pyridines by the reaction of 2-pyridinyl-substituted p-QMs, terminal alkynes, and TsN3 in the presence of O2 under mild conditions have successfully been developed. The investigation indicated that molecular oxygen (O2) and TsN3, respectively, serving as oxygen and nitrogen sources, were essential for the successful completion of the reaction system.
Collapse
Affiliation(s)
- Yan Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Chuanhao Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Mengfan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Hao Tang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Wen Cheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jun Yin
- Shanghai No.4 Reagent Chemical Co., Ltd., Shanghai 201512, P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
3
|
Ma X, Jin X, Bai H, Ma L, Li X, Fang X, Chen W, She M. Visual detection of water content in liquor with near-infrared fluorescence sensor assisted by smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123791. [PMID: 38134656 DOI: 10.1016/j.saa.2023.123791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Water content was an essential indicator in organic solvents, and it was necessary to develop a facile, cheap and readily available tool for the real-time, specifical and sensitive detection of water content. In this work, two novel D-π-A type near-infrared fluorescence sensors (DCM-1 and DCM-2) were designed and synthesized for the detection of trace water in organic solvents. DCM-1 and DCM-2 with solvent-dependent effects and large Stokes shift (>120 nm) showed good linear "intensity-to-content" relationships in four commonly-used organic solvents, and accomplished the ultra-fast and high-accuracy detection of the trace water in organic solvents. More importantly, a portable, fast, and accurate smartphone-assisted visual assay was designed for visual quantitative detection of the water content in organic solvents with a detection limit as low as 1.028 % v/v (e.g. in ethanol) and a wide detection range (0-60 % v/v). The smartphone-based visual assay was further applied to estimate the water content in disinfection alcohol and commercial liquor, which furnished a new strategy and broad prospects to achieve the accurate onsite detection of water content.
Collapse
Affiliation(s)
- Xuehao Ma
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xilang Jin
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
| | - Haiyan Bai
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Liyuan Ma
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xiao Li
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xingliang Fang
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Weixing Chen
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Mengyao She
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, The College of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
4
|
Liu R, Zou T, Yu S, Li W, Wei S, Gong Y, Zhang Z, Zhang S, Yi D. Photoredox-Catalyzed Three-Component 1,2-Cyanoalkylpyridylation of Styrenes with Nonredox-Active Cyclic Oximes. J Org Chem 2023; 88:16410-16423. [PMID: 37943006 DOI: 10.1021/acs.joc.3c01936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Three-component alkene 1,2-difunctionalizations have emerged as a powerful strategy for rapid buildup of diverse and complex alkylpyridines, but the distal functionalized alkyl radicals for the alkene 1,2-alkylpyridylations were still rare. Herein, we report an example of regioselective three-component 1,2-cyanoalkylpyridylation of feedstock styrenes with accessible nonredox-active cyclic oximes through visible-light photoredox catalysis, providing a series of structurally diverse β-cyanoalkylated alkylpyridines. This protocol proceeds through a radical relay pathway including the generation of iminyl radicals enabled by phosphoranyl radical-mediated β-scission, radical transposition through C-C bond cleavage, highly selective radical addition, and precise radical-radical cross-coupling sequence, thus facilitating the regioselective formation of two distinct C-C single bonds in a single-pot operation. This synthetic strategy features mild conditions, broad compatibility of functional groups and substrate scope, diverse product derivatization, and late-stage modification.
Collapse
Affiliation(s)
- Rui Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ting Zou
- Pharmacy Intravenous Admixture Service, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Sha Yu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Weicai Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yimou Gong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhijie Zhang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shiqi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
5
|
Tang J, Lu F, Sun Y, Yang Z, Zhang E, Lv J. Relay Copper-Catalyzed Synthesis of Imidazo[1,5- a]pyridine Scaffolds from Phenylalanine and Halohydrocarbon. J Org Chem 2023. [PMID: 38016102 DOI: 10.1021/acs.joc.3c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
An efficient and straightforward strategy to synthesize imidazo[1,5-a]pyridine compounds from phenylalanine and halohydrocarbon has been successfully developed. The protocol features a relay copper-catalyzed reaction involving intermolecular C-O coupling and intramolecular C-N cyclization, providing an approach to access a diverse range of imidazo[1,5-a]pyridine derivatives with unique aza quaternary carbon centers.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yi Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Zhiyu Yang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jingwei Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
6
|
Liu L, Wen C, Sun G, Li Y, Zhang J, Zhang Z, Wang Z, She M, Liu P, Zhang S, Li J. Multisite-Sequential Cyclization To Construct 1,2,4-Triazole-Based N-Fused Heterocyclics. Org Lett 2023; 25:1530-1535. [PMID: 36852941 DOI: 10.1021/acs.orglett.3c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A feasible protocol that uses atomic groups (KSCN, KSeCN, and NH2CN), o-bromobenzoyl hydrazides, and formyls as reaction factors to synthesize N-fused 1,2,4-triazole with benzothiazides, benzoselenazinones, and quinazolinones was proposed. The method overcomes the lengthy multistep synthesis, narrow substrate scope, and toxicity challenge induced by the use or production of hazardous substances. It also enables the development of fused-heterocyclic selenium and quinazolinone derivatives. Their fluorescent performance further demonstrates the practicability of this methodology.
Collapse
Affiliation(s)
- Lang Liu
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Changting Wen
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Guojin Sun
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Yao Li
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jun Zhang
- College of Chemistry and Chemical Engineering, Ningxia University Yinchuan, Ningxia, 750021, P. R. China
| | - Zhe Zhang
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Zesi Wang
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Mengyao She
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, The College of Life Sciences, Faculty of Life and Health Science, Northwest University, Xi'an, Shaanxi Province 710069, P. R. China
| | - Ping Liu
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Shengyong Zhang
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
7
|
Zhong R, Jiang R, Zeng J, Gong X, Yang X, He L, Yuan L, Cheng D. Enhancing the Selectivity of Leucine Aminopeptidase Near-Infrared Fluorescent Probes for Assisting in Surgical Tumor Resection. Anal Chem 2023; 95:2428-2435. [PMID: 36648160 DOI: 10.1021/acs.analchem.2c04587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Selective fluorescence imaging of analytes is a challenge for monitoring diseases as homologues interfere with the imaging agents. Leucine aminopeptidase (LAP), a kind of protease, is related to tumor pathogenesis. The known LAP fluorescent probes based on leucine recognition have limited selectivity. Herein, a selective t-butyl-alanine recognition unit for LAP through the ligand regulation strategy is prepared as a new near-infrared (NIR) fluorescent probe (DCM-LAP) having a large Stokes shift of 214 nm and a high sensitivity with a detection limit of 168 mU/L. DCM-LAP has an enhanced response toward LAP with NIR fluorescence at 656 nm based on intramolecular charge transfer. The probe is selective without being interfered with by biological enzymes including the aminopeptidase N (APN). DCM-LAP can image LAP activity in living cells. It can also visualize the cell invasion and migration processes. DCM-LAP is employed in the real-time imaging of LAP in tumor-bearing nude mice and guides in the accurate resection of breast tumors. It also distinguishes tumor tissues from normal with a high tumor-to-normal ratio (9.8). The DCM-LAP probe can thus assist in the investigations of LAP-associated clinical disease.
Collapse
Affiliation(s)
- Rongbin Zhong
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002 Hunan, China
| | - Renfeng Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421002 Hunan, China
| | - Jiayu Zeng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421002 Hunan, China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Xuefeng Yang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002 Hunan, China
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421002 Hunan, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Dan Cheng
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002 Hunan, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| |
Collapse
|
8
|
Wang L, Zheng X, Zheng Q, Li Z, Wu J, Gao G. Thioether-Assisted Cu-Catalyzed C5-H Arylation of Imidazo[1,5- a]pyridines. Org Lett 2022; 24:3834-3838. [PMID: 35609286 DOI: 10.1021/acs.orglett.2c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Cu-catalyzed regioselective C5-H arylation of imidazo[1,5-a]pyridines with aryl iodides was achieved with the assistance of an ethylthio group at the C3 position. This directing group could be easily removed to furnish a range of 5-(hetero)arylimidazo[1,5-a]pyridine derivatives. The reaction tolerates a variety of functionalities and is compatible with sterically hindered substrates.
Collapse
Affiliation(s)
- Linhua Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, People's Republic of China
| | - Xuesong Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, People's Republic of China
| | - Qinze Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, People's Republic of China
| | - Zhenlong Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, People's Republic of China
| | - Jian Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, People's Republic of China
| | - Ge Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, People's Republic of China
| |
Collapse
|
9
|
Wang Q, Yao X, Xu XJ, Zhang S, Ren L. Electrochemical [4 + 1] Tandem sp 3(C-H) Double Amination for the Direct Synthesis of 3-Acyl-Functionalized Imidazo[1,5- a]pyridines. ACS OMEGA 2022; 7:4305-4310. [PMID: 35155923 PMCID: PMC8829863 DOI: 10.1021/acsomega.1c06029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
3-Acyl imidazo[1,5-a]pyridines, featured pharmaceutical moieties that were prepared by a three-step reaction conventionally, could be obtained in one step by an electrochemical tandem sp3 (C-H) double amination of acetophenones with pyridine ethylamines using ammonium iodide as a redox mediator.
Collapse
Affiliation(s)
- Qiang Wang
- Research
Center For Biomedical And Health Science, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Xia Yao
- Research
Center For Biomedical And Health Science, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Xian-jing Xu
- Research
Center For Biomedical And Health Science, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Shuai Zhang
- Nanjing
Harris Bio-Pharmaceutical Technology Co., Ltd., Nanjing, Jiangsu 210000, China
| | - Lei Ren
- Department
of Material and Chemical Engineering, Bengbu
University, Bengbu, Anhui 233030, P. R. China
| |
Collapse
|
10
|
Hu YJ, Zhou Y, Gao JJ, Zhang H, Yang KR, Li JJ, Yan XX, Li YL, Zhu YP. I2-Mediated [3 + 2] annulation of methyl-azaarenes with alkyl 2-isocyanoacetates or amino acid ester hydrochlorides: selective synthesis of iodine-functionalized and non-iodine-functionalized fused imidazoles. Org Chem Front 2022. [DOI: 10.1039/d1qo01940f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An I2-mediated [3 + 2] annulation of methyl-azaarenes with alkyl 2-isocyanoacetates or amino acid ester hydrochlorides has been demonstrated. This strategy involves the C≡N cleavage of isocyanides and can selectively...
Collapse
|
11
|
Abedi SAA, Chi W, Tan D, Shen T, Wang C, Ang ECX, Tan CH, Anariba F, Liu X. Restriction of Twisted Intramolecular Charge Transfer Enables the Aggregation-Induced Emission of 1-( N, N-Dialkylamino)-naphthalene Derivatives. J Phys Chem A 2021; 125:8397-8403. [PMID: 34546046 DOI: 10.1021/acs.jpca.1c06263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the mechanisms of aggregation-induced emission (AIE) is essential for the rational design and deployment of AIEgens toward various applications. Such a deep mechanistic understanding demands a thorough investigation of the excited-state behaviors of AIEgens. However, because of considerable complexity and rapid decay, these behaviors are often not experimentally accessible and the mechanistic comprehension of many AIEgens is lacking. Herein, utilizing detailed quantum chemical calculations, we provide insights toward the AIE mechanism of 1-(N,N-dialkylamino)-naphthalene (DAN) derivatives. Our theoretical analysis, corroborated by experimental observations, leads to the discovery that modulating the formation of the twisted intramolecular charge transfer (TICT) state (caused by the rotation of the amino groups) and managing the steric hindrance to minimize solid-state intermolecular interactions provides a plausible explanation for the AIE characteristics of DAN derivatives. These results will inspire the deployment of the TICT mechanism as a useful design strategy toward AIEgen development.
Collapse
Affiliation(s)
| | | | | | | | | | - Esther Cai Xia Ang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Choon-Hong Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | | | | |
Collapse
|