1
|
Guo Z, Zhao Y, Jin Z, Chang Y, Wang X, Guo G, Zhao Y. Monolithic 3D nanoelectrospray emitters based on a continuous fluid-assisted etching strategy for glass droplet microfluidic chip-mass spectrometry. Chem Sci 2024; 15:7781-7788. [PMID: 38784731 PMCID: PMC11110156 DOI: 10.1039/d4sc01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Glass microfluidic chips are suitable for coupling with mass spectrometry (MS) due to their flexible design, optical transparency and resistance to organic reagents. However, due to the high hardness and brittleness of glass, there is a lack of simple and feasible technology to manufacture a monolithic nanospray ionization (nESI) emitter on a glass microchip, which hinders its coupling with mass spectrometry. Here, a continuous fluid-assisted etching strategy is proposed to fabricate monolithic three-dimensional (3D) nESI emitters integrated into glass microchips. A continuous fluid of methanol is adopted to protect the inner wall of the channels and the bonding interface of the glass microfluidic chip from being wet-etched, forming sharp 3D nESI emitters. The fabricated 3D nESI emitter can form a stable electrospray plume, resulting in consistent nESI detection of acetylcholine with an RSD of 4.5% within 10 min. The fabricated 3D emitter is integrated on a glass microfluidic chip designed with a T-junction droplet generator, which can realize efficient analysis of acetylcholine in picoliter-volume droplets by nESI-MS. Stability testing of over 20 000 droplets detected by the established system resulted in an RSD of 9.1% over approximately 180 min. The detection of ten neurochemicals in rat cerebrospinal fluid droplets is achieved. The established glass droplet microfluidic chip-MS system exhibits potential for broad applications such as in vivo neurochemical monitoring and single-cell analysis in the future.
Collapse
Affiliation(s)
- Ziyang Guo
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Yingqi Zhao
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Zhao Jin
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Yaran Chang
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Xiayan Wang
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Guangsheng Guo
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
- Minzu University of China Beijing 100081 China
| | - Yaoyao Zhao
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
2
|
Ren J, Xu G, Liu H, He N, Zhao Z, Wang M, Gu P, Chen Z, Deng Y, Wu D, Li S. A Chamber-Based Digital PCR Based on a Microfluidic Chip for the Absolute Quantification and Analysis of KRAS Mutation. BIOSENSORS 2023; 13:778. [PMID: 37622864 PMCID: PMC10452697 DOI: 10.3390/bios13080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
The Kirsten rat sarcoma virus gene (KRAS) is the most common tumor in human cancer, and KRAS plays an important role in the growth of tumor cells. Normal KRAS inhibits tumor cell growth. When mutated, it will continuously stimulate cell growth, resulting in tumor development. There are currently few drugs that target the KRAS gene. Here, we developed a microfluidic chip. The chip design uses parallel fluid channels combined with cylindrical chamber arrays to generate 20,000 cylindrical microchambers. The microfluidic chip designed by us can be used for the microsegmentation of KRAS gene samples. The thermal cycling required for the PCR stage is performed on a flat-panel instrument and detected using a four-color fluorescence system. "Glass-PDMS-glass" sandwich structure effectively reduces reagent volatilization; in addition, a valve is installed at the sample inlet and outlet on the upper layer of the chip to facilitate automatic control. The liquid separation performance of the chip was verified by an automated platform. Finally, using the constructed KRAS gene mutation detection system, it is verified that the chip has good application potential for digital polymerase chain reaction (dPCR). The experimental results show that the chip has a stable performance and can achieve a dynamic detection range of four orders of magnitude and a gene mutation detection of 0.2%. In addition, the four-color fluorescence detection system developed based on the chip can distinguish three different KRAS gene mutation types simultaneously on a single chip.
Collapse
Affiliation(s)
- Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Gangwei Xu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhehao Zhao
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Peipei Gu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Dongping Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
- Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Shi J, Tong W, Yu Z, Tong L, Chen H, Jin J, Zhu Y. Pollution-Free and Highly Sensitive Lactate Detection in Cell Culture Based on a Microfluidic Chip. MICROMACHINES 2023; 14:770. [PMID: 37421003 DOI: 10.3390/mi14040770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 07/09/2023]
Abstract
Cell metabolite detection is important for cell analysis. As a cellular metabolite, lactate and its detection play an important role in disease diagnosis, drug screening and clinical therapeutics. This paper reports a microfluidic chip integrated with a backflow prevention channel for cell culture and lactate detection. It can effectively realize the upstream and downstream separation of the culture chamber and the detection zone, and prevent the pollution of cells caused by the potential backflow of reagent and buffer solutions. Due to such a separation, it is possible to analyze the lactate concentration in the flow process without contamination of cells. With the information of residence time distribution of the microchannel networks and the detected time signal in the detection chamber, it is possible to calculate the lactate concentration as a function of time using the de-convolution method. We have further demonstrated the suitability of this detection method by measuring lactate production in human umbilical vein endothelial cells (HUVEC). The microfluidic chip presented here shows good stability in metabolite quick detection and can work continuously for more than a few days. It sheds new insights into pollution-free and high-sensitivity cell metabolism detection, showing broad application prospects in cell analysis, drug screening and disease diagnosis.
Collapse
Affiliation(s)
- Jiaming Shi
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Wenqiang Tong
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Zhihang Yu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Lei Tong
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Huaying Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Jing Jin
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Yonggang Zhu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| |
Collapse
|
4
|
Yang Y, Xu F, Chen J, Tao C, Li Y, Chen Q, Tang S, Lee HK, Shen W. Artificial intelligence-assisted smartphone-based sensing for bioanalytical applications: A review. Biosens Bioelectron 2023; 229:115233. [PMID: 36965381 DOI: 10.1016/j.bios.2023.115233] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Artificial intelligence (AI) has received great attention since the concept was proposed, and it has developed rapidly in recent years with applications in many fields. Meanwhile, newer iterations of smartphone hardware technologies which have excellent data processing capabilities have leveraged on AI capabilities. Based on the desirability for portable detection, researchers have been investigating intelligent analysis by combining smartphones with AI algorithms. Various examples of the application of AI algorithm-based smartphone detection and analysis have been developed. In this review, we give an overview of this field, with a particular focus on bioanalytical detection applications. The applications are presented in terms of hardware design, software algorithms, and specific application areas. We also discuss the existing limitations of AI-based smartphone detection and analytical approaches, and their future prospects. The take-home message of our review is that the application of AI in the field of detection analysis is restricted by the limitations of the smartphone's hardware as well as the model building of AI for detection targets with insufficient data. Nevertheless, at this juncture, while bioanalytical diagnostics and health monitoring have set the pace for AI-based smartphone applicability, the future should see the technology making greater inroads into other fields. In relation to the latter, it is likely that the ordinary or average person will play a greater participatory role.
Collapse
Affiliation(s)
- Yizhuo Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Fang Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Chunxu Tao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Yunxin Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| |
Collapse
|
5
|
Chang X, Wang N, Jiang D, Chen HY, Jiang D. Nanokit coupled electrospray ionization mass spectrometry for analysis of angiotensin converting enzyme 2 activity in single living cell. CHINESE CHEM LETT 2023; 34:107522. [PMID: 35602918 PMCID: PMC9109968 DOI: 10.1016/j.cclet.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is not only an enzyme but also a functional receptor on cell membrane for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the activity of ACE2 in single living cell is firstly determined using a nanokit coupled electrospray ionization mass spectrometry (nanokit-ESI-MS). Upon the insertion of a micro-capillary into the living hACE2-CHO cell and the electrochemical sorting of the cytosol, the target ACE2 enzyme hydrolyses angiotensin II inside the capillary to generate angiotensin 1-7. After the electrospray of the mixture at the tip of the capillary, the product is differentiated from the substrate in molecular weight to achieve the detection of ACE2 activity in single cells. The further measurement illustrates that the inflammatory state of cells does not lead to the significant change of ACE2 catalytic activity, which elucidates the relationship between intracellular ACE2 activity and inflammation at single cell level. The established strategy will provide a specific analytical method for further studying the role of ACE2 in the process of virus infection, and extend the application of nanokit based single cell analysis.
Collapse
Affiliation(s)
- Xinqi Chang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Nina Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Depeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Qian M, Zhang D, Qi H, Yang X, Yin G, Zhang C, Guo J, Qi H. pH-responsive aldehyde-bearing cyclometalated iridium(III) complex for tracking intracellular pH fluctuations under external stimulation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhang Y, Hu X, Wang Q, Zhang Y. Recent advances in microchip-based methods for the detection of pathogenic bacteria. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|